The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. n-Type Doped Si Selectivity with H2O2 or HNO3 q-ALE
3.2. Effect of Doped Si and HNO3 Concentration Dependence
3.3. Effect of Doped SiGe and Ge Fraction Dependence
3.4. Strain and Material Quality Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; et al. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef]
- Singh, N.; Buddharaju, K.D.; Manhas, S.K.; Agarwal, A.; Rustagi, S.C.; Lo, G.Q.; Balasubramanian, N.; Kwong, D.L. Si, SiGe nanowire devices by top–down technology and their applications. IEEE Trans. Electron. Devices 2008, 55, 3107–3118. [Google Scholar] [CrossRef]
- Radamson, H.H.; He, X.; Zhang, Q.; Liu, J.; Cui, H.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Gao, J.; et al. Miniaturization of CMOS. Micromachines 2019, 10, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radamson, H.H.E.; Luo, J.; Zhao, C. Past, Present and Future of CMOS. In Woodhead Publishing Series in Electronic and Optical Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–114. [Google Scholar] [CrossRef]
- Gandhi, R.; Chen, Z.; Singh, N.; Banerjee, K.; Lee, S. Vertical Si-Nanowire n-Type Tunneling FETs with Low Subthreshold Swing 50 mV/decade at Room Temperature. IEEE Electron. Device Lett. 2011, 32, 437–439. [Google Scholar] [CrossRef]
- Bhuwalka, S.S.K.K.; Ludsteck, A.K.; Tolksdorf, C.; Schulze, J.; Eisele, I. Vertical Tunnel Field-Effect Transistor. IEEE Trans. Electron. Devices 2004, 51, 279–282. [Google Scholar] [CrossRef]
- Saremi, M.; Afzali-Kusha, A.; Mohammadi, S. Ground plane fin-shaped field effect transistor (GP-FinFET): A FinFET for low leakage power circuits. Microelectron. Eng. 2012, 95, 74–82. [Google Scholar] [CrossRef]
- Imenabadi, R.M.; Saremi, M.; Vandenberghe, W.G. A Novel PNPN-Like Z-Shaped Tunnel Field- Effect Transistor with Improved Ambipolar Behavior and RF Performance. IEEE Trans. Electron. Devices 2017, 64, 4752–4758. [Google Scholar] [CrossRef]
- Abadi, R.M.I.; Saremi, M. A Resonant Tunneling Nanowire Field Effect Transistor with Physical Contractions: A Negative Differential Resistance Device for Low Power Very Large Scale Integration Applications. J. Electron. Mater. 2018, 47, 1091–1098. [Google Scholar] [CrossRef]
- Sivieri, V.D.B.; Bordallo, C.C.M.; Der Agopian, P.G.; Martino, J.A.; Rooyackers, R.; Vandooren, A.; Simoen, E.; Thean, A.; Claeys, C. Vertical Nanowire TFET Diameter Influence on Intrinsic Voltage Gain for Different Inversion Conditions. ECS Trans. 2015, 66, 187–192. [Google Scholar] [CrossRef]
- Bhuwalka, K.K.; Schulze, J.; Eisele, I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron. Devices 2005, 52, 909–917. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Y.; Zhu, H.; Wang, G.L.; Li, J.J.; Du, A.Y.; Li, C.; Zhao, L.H.; Huang, W.X.; Yang, H.; et al. Vertical Sandwich Gate-All-Around Field-Effect Transistors with Self-Aligned High-k Metal Gates and Small Effective-Gate-Length Variation. IEEE Electron. Device Lett. 2020, 41, 8–11. [Google Scholar] [CrossRef]
- Acker, J.; Rietig, A.; Steinert, M.; Hoffmann, V. Mass and Electron Balance for the Oxidation of Silicon during the Wet Chemical Etching in HF/HNO3 Mixtures. J. Phys. Chem. C 2012, 116, 20380–20388. [Google Scholar] [CrossRef]
- Steinert, M.J.A.; Wetzig, K. New Aspects on the Reduction of Nitric Acid during Wet Chemical Etching of Silicon in Concentrated HF-HNO3 Mixtures. J. Phys. Chem. C 2008, 112, 14139–14144. [Google Scholar] [CrossRef]
- Steinert, M.J.A.; Oswald, S.; Wetzig, K. Study on the Mechanism of Silicon Etching in HNO3-Rich HF HNO3 Mixtures. J. Phys. Chem. C 2007, 111, 2133–2140. [Google Scholar] [CrossRef]
- Baraissov, Z.; Pacco, A.; Koneti, S.; Bisht, G.; Panciera, F.; Holsteyns, F.; Mirsaidov, U. Selective Wet Etching of Silicon Germanium in Composite Vertical Nanowires. ACS Appl. Mater. Interfaces 2019, 11, 36839–36846. [Google Scholar] [CrossRef] [Green Version]
- Gondek, C.; Lippold, M.; Röver, I.; Bohmhammel, K.; Kroke, E. Etching Silicon with HF-H2O2-Based Mixtures: Reactivity Studies and Surface Investigations. J. Phys. Chem. C 2014, 118, 2044–2051. [Google Scholar] [CrossRef]
- Choi, Y.; Jang, H.; Byun, D.-s.; Ko, D.-H. Selective chemical wet etching of Si1-xGex versus Si in single-layer and multi-layer with HNO3/HF mixtures. Thin Solid Films 2020, 709, 138230. [Google Scholar] [CrossRef]
- Cams, T.K.; Tanner, M.O.; Wang, K.L. Chemical Etching of Si1−xGex in HF : H2O2 : CH3COOH. J. Electrochem. Soc. 1995, 142, 1260–1266. [Google Scholar] [CrossRef]
- Loubet, N.; Kormann, T.; Chabanne, G.; Denorme, S.; Dutartre, D. Selective etching of Si1−xGex versus Si with gaseous HCl for the formation of advanced CMOS devices. Thin Solid Films 2008, 517, 93–97. [Google Scholar] [CrossRef]
- Caubet, V.; Beylier, C.; Borel, S.; Renault, O. Mechanisms of isotropic and selective etching between SiGe and Si. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2006, 24, 2748. [Google Scholar] [CrossRef]
- Borel, S.; Arvet, C.; Bilde, J.; Caubet, V.; Louis, D. Control of Selectivity between SiGe and Si in Isotropic Etching Processes. Jpn. J. Appl. Phys. 2004, 43, 3964–3966. [Google Scholar] [CrossRef]
- Ahles, C.F.; Choi, J.Y.; Wolf, S.; Kummel, A.C. Selective Etching of Silicon in Preference to Germanium and Si0.5Ge0.5. ACS Appl. Mater. Interfaces 2017, 9, 20947–20954. [Google Scholar] [CrossRef] [PubMed]
- Oehrlein, G.S.; Tromp, R.M.; Lee, Y.H.; Petrillo, E.J. Study of silicon contamination and near-surface damage caused by CF4/H2 reactive ion etching. Appl. Phys. Lett. 1984, 45, 420–422. [Google Scholar] [CrossRef]
- Cano, A.M.; Marquardt, A.E.; DuMont, J.W.; George, S.M. Effect of HF Pressure on Thermal Al2O3 Atomic Layer Etch Rates and Al2O3 Fluorination. J. Phys. Chem. C 2019, 123, 10346–10355. [Google Scholar] [CrossRef]
- Min, K.S.; Kang, S.H.; Kim, J.K.; Jhon, Y.I.; Jhon, M.S.; Yeom, G.Y. Atomic layer etching of Al2O3 using BCl3/Ar for the interface passivation layer of III–V MOS devices. Microelectron. Eng. 2013, 110, 457–460. [Google Scholar] [CrossRef]
- DuMont, J.W.; Marquardt, A.E.; Cano, A.M.; George, S.M. Thermal Atomic Layer Etching of SiO2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride. ACS Appl. Mater. Interfaces 2017, 9, 10296–10307. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; George, S.M. Thermal Atomic Layer Etching of Titanium Nitride Using Sequential, Self-Limiting Reactions: Oxidation to TiO2 and Fluorination to Volatile TiF4. Chem. Mater. 2017, 29, 8202–8210. [Google Scholar] [CrossRef]
- Lu, W.; Lee, Y.; Murdzek, J.; Gertsch, J.; Vardi, A. First Transistor Demonstration of Thermal Atomic Layer Etching: InGaAs FinFETs with sub-5 nm Fin-width Featuring in situ ALE-ALD. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Xie, W.; Lemaire, P.C.; Parsons, G.N. Thermally Driven Self-Limiting Atomic Layer Etching of Metallic Tungsten Using WF6 and O2. ACS Appl. Mater. Interfaces 2018, 10, 9147–9154. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Zhang, Y.; Yin, X.; Jia, K.; Li, J.; Wang, G.; Kong, Z.; Du, A.; Yang, T.; et al. Selective Digital Etching of Silicon-Germanium Using Nitric and Hydrofluoric Acids. ACS Appl. Mater. Interfaces 2020, 12, 48170–48178. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, H.; Zhao, L.; Wang, G.; Li, C.; Huang, W.; Zhang, Y.; Jia, K.; Li, J.; Radamson, H.H. Study of Isotropic and Si-Selective Quasi Atomic Layer Etching of Si1−xGex. ECS J. Solid State Sci. Technol. 2020, 9, 034012. [Google Scholar] [CrossRef]
- Gokce, B.; Aspnes, D.E.; Lucovsky, G.; Gundogdua, K. Bond-specific reaction kinetics during the oxidation of (111) Si Effect of n-type doping. Appl. Phys. Lett. 2011, 98, 021904. [Google Scholar] [CrossRef] [Green Version]
- Hansson, G.V.; Radamsson, H.H.; Ni, W.X. Strain and Relaxation in Si-Mbe Structures Studied by Reciprocal Space Mapping Using High-Resolution X-Ray-Diffraction. J. Mater. Sci-Mater. El 1995, 6, 292–297. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, Y.; Zhou, N.; Wang, G.; Kong, Z.; Fu, J.; Yin, X.; Li, C.; Wang, X.; et al. Study of selective isotropic etching Si1−xGex in process of nanowire transistors. J. Mater. Sci. Mater. Electron. 2019, 31, 134–143. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhu, H.; Kong, Z.; Zhang, Y.; Ai, X.; Wang, G.; Wang, Q.; Liu, Z.; Lu, S.; Xie, L.; et al. The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids. Nanomaterials 2021, 11, 1209. https://doi.org/10.3390/nano11051209
Li Y, Zhu H, Kong Z, Zhang Y, Ai X, Wang G, Wang Q, Liu Z, Lu S, Xie L, et al. The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids. Nanomaterials. 2021; 11(5):1209. https://doi.org/10.3390/nano11051209
Chicago/Turabian StyleLi, Yangyang, Huilong Zhu, Zhenzhen Kong, Yongkui Zhang, Xuezheng Ai, Guilei Wang, Qi Wang, Ziyi Liu, Shunshun Lu, Lu Xie, and et al. 2021. "The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids" Nanomaterials 11, no. 5: 1209. https://doi.org/10.3390/nano11051209
APA StyleLi, Y., Zhu, H., Kong, Z., Zhang, Y., Ai, X., Wang, G., Wang, Q., Liu, Z., Lu, S., Xie, L., Huang, W., Liu, Y., Li, C., Li, J., Lin, H., Su, J., Zeng, C., & Radamson, H. H. (2021). The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids. Nanomaterials, 11(5), 1209. https://doi.org/10.3390/nano11051209