Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization and Measurements
2.3. Preparation of AuNPs, AuNP-Immersed Paper, and Pesticides
2.4. Quantitative Determination of Chlorantraniliprole by HPLC
2.5. Laser Desorption/Ionization (LDI) Source
2.6. Time-of-Flight Mass Spectrometer
2.7. Date Processing for MSI
2.8. Workflow for the AuNP-Immersed Paper Imprinting MSI Platform
3. Results and Discussion
3.1. Improved Desorption/Ionization Efficiency of Pesticides Using AuNP-Immersed Paper
3.2. Characterization of AuNPs on Immersed Filter Paper
3.3. Spatiotemporal Distribution of Insecticides Using AuNP-Immersed Paper Imprinting MSI
3.4. Spatiotemporal Distribution of Fungicides within Strawberry and Cucumber Tissues Using AuNP-Immersed Paper Imprinting MSI
3.5. Comparisons of Chlorantraniliprole and Azoxystrobin Migration Speed Using AuNP-Immersed Paper Imprinting MSI
3.6. The Potential Mechanism for Discrepant Migration Rate of Pesticides within Fruit and Vegetable Tissues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larsen, A.E.; Gaines, S.D.; Deschênes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 2017, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, Y.; Qin, R.; Li, P.; Wen, Y.; Yin, Z.; Zhang, Z.; Xu, H. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry. Talanta 2021, 224, 121901. [Google Scholar] [CrossRef]
- King, T.; Cole, M.; Farber, J.; Eisenbrand, G.; Zabaras, D.; Fox, E.; Hill, J. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Tech. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Guo, P.; Zhang, Z.; Xu, H. Rapid Trace detection and isomer quantitation of pesticide residues via matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Agric. Food Chem. 2018, 66, 3966–3974. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, R.; Iacob, B.-C.; Farcău, C.; Bodoki, E.; Oprean, R. Strategies for SERS detection of organochlorine pesticides. Nanomaterials 2021, 11, 304. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Wang, J.; Chow, W.; Carlson, R.; Jia, Z.; Zhang, K.; Hayward, D.; Chang, J. Perspectives on liquid chromatography-high resolution mass spectrometry for pesticide screening in foods. J. Agric. Food Chem. 2018, 66, 9573–9581. [Google Scholar] [CrossRef]
- Wang, J.; Lei, Z.; Wen, Y.; Mao, G.; Wu, H.; Xu, H. A novel fluorescent conjugate applicable to visualize the translocation of glucose–fipronil. J. Agric. Food Chem. 2014, 62, 8791–8798. [Google Scholar] [CrossRef]
- Fu, Q.; Dudley, S.; Sun, C.; Schlenk, D.; Gan, J. Stable isotope labeling-assisted metabolite probing for emerging contaminants in plants. Anal. Chem. 2018, 90, 11040–11047. [Google Scholar] [CrossRef]
- Yang, T.; Doherty, J.; Guo, H.; Zhao, B.; Clark, J.; Xing, B.; Hou, R.; He, L. Real-Time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal. Chem. 2019, 91, 2093–2099. [Google Scholar] [CrossRef]
- Yang, T.; Doherty, J.; Zhao, B.; Kinchla, A.; Clark, J.; He, L. Effectiveness of commercial and homemade washing agents in removing pesticide residues on and in apples. J. Agric. Food Chem. 2017, 65, 9744–9752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, D.; Du, M.; Ma, L.; Li, P.; Qin, R.; Yang, J.; Yin, Z.; Wu, X.; Xu, H. Insights into the degradation and toxicity difference mechanism of neonicotinoid pesticides in honeybees by mass spectrometry imaging. Sci. Total Environ. 2021, 774, 145170. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Goto-Inoue, N.; Moriyama, T.; Zaima, N. Significant advancement of mass spectrometry imaging for food chemistry. Food Chem. 2016, 210, 200–211. [Google Scholar] [CrossRef]
- Liao, Y.; Fu, X.; Zhou, H.; Rao, W.; Zeng, L.; Yang, Z. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chem. 2019, 292, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.; Banstola, B.; Wang, K.; Donnarumma, F.; Vaz, B.G.; Murray, K.K. Matrix-Assisted laser desorption ionization imaging and laser ablation sampling for analysis of fungicide distribution in apples. Anal. Chem. 2019, 91, 6051–6056. [Google Scholar] [CrossRef] [PubMed]
- Nielen, M.W.F.; van Beek, T.A. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging. Anal. Bioanal. Chem. 2014, 406, 6805–6815. [Google Scholar] [CrossRef] [Green Version]
- Gemperline, E.; Keller, C.; Li, L. Mass spectrometry in plant-omics. Anal. Chem. 2016, 88, 3422–3434. [Google Scholar] [CrossRef] [Green Version]
- Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-µm lateral resolution. Nat. Methods 2017, 14, 90–96. [Google Scholar] [CrossRef]
- Morisasa, M.; Sato, T.; Kimura, K.; Mori, T.; Goto-Inoue, N. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging for food analysis. Foods 2019, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Giordano, S.; Pifferi, V.; Morosi, L.; Morelli, M.; Falciola, L.; Cappelletti, G.; Visentin, S.; Licandro, S.A.; Frapolli, R.; Zucchetti, M.; et al. A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging. Nanomaterials 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Cheng, X.; Liu, R.; Li, X.; Hang, L.; Hang, W.; Xu, J.; Yan, X.; Li, J.; Tian, Z. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem. Int. Ed. 2019, 58, 4541–4546. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Cheng, X.; Wang, T.; Hang, W.; Li, X.; Nie, W.; Liu, R.; Lin, Z.; Hang, L.; Yin, Z.; et al. Micro-Lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells. Angew. Chem. Int. Ed. 2020, 59, 17864–17871. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yin, Z.; Rong, L.; Hang, W. Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry. Nano Res. 2020, 13, 745–751. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, X.; Xu, H.; Meng, Y.; Yin, Z.; Li, X.; Hang, W. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal. Chem. 2020, 92, 543–553. [Google Scholar] [CrossRef]
- Kompauer, M.; Heiles, S.; Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat. Methods 2017, 14, 1156–1158. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Ge, J.; Liu, K.; Li, P. Sample preparation for mass spectrometry imaging of leaf tissues: A case study on analyte delocalization. Anal. Bioanal. Chem. 2018, 410, 7449–7456. [Google Scholar] [CrossRef]
- Dong, Y.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample preparation for mass spectrometry imaging of plant tissues: A review. Front. Plant. Sci. 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taira, S.; Tokai, M.; Kaneko, D.; Katano, H.; Kawamura-Konishi, Y. Mass spectrometry imaging analysis of location of procymidone in cucumber samples. J. Agric. Food Chem. 2015, 63, 6109–6112. [Google Scholar] [CrossRef]
- Li, B.; Knudsen, C.; Hansen, N.K.; Jørgensen, K.; Kannangara, R.; Bak, S.; Takos, A.; Rook, F.; Hansen, S.H.; Møller, B.L.; et al. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant. J. 2013, 74, 1059–1071. [Google Scholar] [CrossRef]
- Tata, A.; Perez, C.J.; Hamid, T.S.; Bayfield, M.A.; Ifa, D.R. Analysis of metabolic changes in plant pathosystems by imprint imaging DESI-MS. J. Am. Soc. Mass. Spectrom. 2015, 26, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, H.; Kotani, M.; Ohmura, T. Novel blotting method for mass spectrometry imaging of metabolites in strawberry fruit by desorption/ionization using through hole alumina membrane. Foods 2020, 9, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-W.; Kwon, S.; Kim, Y.-K. Graphene oxide derivatives and their nanohybrid structures for laser desorption/ionization time-of-flight mass spectrometry analysis of small molecules. Nanomaterials 2021, 11, 288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Chang, Y.-H.; Lin, Y.-H.; Liou, C.-C.; Kuo, T.-R. High-Performance sample substrate of gold nanoparticle multilayers for surface-assisted laser desorption/ionization mass spectrometry. Nanomaterials 2019, 9, 1078. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Yang, X.; Yang, Y.; Qin, P.; Wu, X.; Cai, Z. Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials 2017, 7, 87. [Google Scholar] [CrossRef]
- Wu, X.; Qin, R.; Wu, H.; Yao, G.; Zhang, Y.; Li, P.; Xu, Y.; Zhang, Z.; Yin, Z.; Xu, H. Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Res. 2020, 13, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xu, H.; Marivingt-Mounir, C.; Bonnemain, J.-L.; Chollet, J.-F. Vectorizing agrochemicals: Enhancing bioavailability via carrier-mediated transport. Pest. Manag. Sci. 2019, 75, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Seed-Mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, Z.; Liu, R.; Hang, W.; Huang, B. Microtrace analysis of rare earth element residues in femtogram quantities by laser desorption and laser postionization mass spectrometry. Anal. Chem. 2017, 89, 7455–7461. [Google Scholar] [CrossRef]
- Yin, Z.; Cheng, X.; Liu, R.; Hang, W.; Huang, B. Depth profiling of nanometer thin layers by laser desorption and laser postionization time-of-flight mass spectrometry. J. Anal. At. Spectrom. 2017, 32, 1878–1884. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, S.; Zhang, Z.; Hang, W. 3D nanoscale chemical imaging of core–shell microspheres via microlensed fiber laser desorption postionization mass spectrometry. Anal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Y.; Yang, F.; Cui, H.; Wu, D. Development of a chlorantraniliprole microcapsule formulation with a high loading content and controlled-release property. J. Agric. Food Chem. 2017, 66, 6561–6568. [Google Scholar] [CrossRef]
- Caboni, P.; Sarais, G.; Angioni, A.; Vargiu, S.; Pagnozzi, D.; Cabras, P.; Casida, J.E. Liquid chromatography−tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables. J. Agric. Food Chem. 2008, 56, 7696–7699. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, E.; Miyake, S. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay. Food Chem. 2013, 136, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, M.F.; Başlar, M.; Basançelebi, O.; Kılıçlı, M. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chem. 2018, 267, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Pareja, L.; Colazzo, M.; Pérez Parada, A.; Besil, N.; Heinzen, H.; Böcking, B.; Cesio, V.; Fernández-Alba, A. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing. J. Agric. Food Chem. 2012, 60, 4440–4448. [Google Scholar] [CrossRef]
- Ruengprapavut, S.; Sophonnithiprasert, T.; Pongpoungphet, N. The effectiveness of chemical solutions on the removal of carbaryl residues from cucumber and chili presoaked in carbaryl using the HPLC technique. Food Chem. 2020, 309, 125659. [Google Scholar] [CrossRef]
- Cámara, M.; Cermeño, S.; Martínez, G.; Oliva, J. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chem. 2020, 325, 126936. [Google Scholar] [CrossRef]
- Yao, G.; Wen, Y.; Zhao, C.; Xu, H. Novel amino acid ester–chlorantraniliprole conjugates: Design, synthesis, phloem accumulation and bioactivity. Pest. Manag. Sci. 2017, 73, 2131–2137. [Google Scholar] [CrossRef]
- Manthey, M.; Faust, M.; Smolka, S.; Grimme, L. Herbicide bioconcentration in algae: Studies on lipophilicity-sorption-activity relationships (LSAR) with Chlorella fusca. Sci. Total Environ. 1993, 134, 453–459. [Google Scholar] [CrossRef]
- Pei, C.; Liu, C.; Wang, Y.; Cheng, D.; Li, R.; Shu, W.; Zhang, C.; Hu, W.; Jin, A.; Yang, Y.; et al. FeOOH@metal–organic framework core–satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew. Chem. Int. Ed. 2020, 59, 10831–10835. [Google Scholar] [CrossRef]
- Shu, W.; Wang, Y.; Liu, C.; Li, R.; Pei, C.; Lou, W.; Lin, S.; Di, W.; Wan, J. Construction of a plasmonic chip for metabolic analysis in cervical cancer screening and evaluation. Small Methods 2020, 4, 1900469. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, R.; Li, P.; Du, M.; Ma, L.; Huang, Y.; Yin, Z.; Zhang, Y.; Chen, D.; Xu, H.; Wu, X. Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials 2021, 11, 1327. https://doi.org/10.3390/nano11051327
Qin R, Li P, Du M, Ma L, Huang Y, Yin Z, Zhang Y, Chen D, Xu H, Wu X. Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials. 2021; 11(5):1327. https://doi.org/10.3390/nano11051327
Chicago/Turabian StyleQin, Run, Ping Li, Mingyi Du, Lianlian Ma, Yudi Huang, Zhibin Yin, Yue Zhang, Dong Chen, Hanhong Xu, and Xinzhou Wu. 2021. "Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging" Nanomaterials 11, no. 5: 1327. https://doi.org/10.3390/nano11051327
APA StyleQin, R., Li, P., Du, M., Ma, L., Huang, Y., Yin, Z., Zhang, Y., Chen, D., Xu, H., & Wu, X. (2021). Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials, 11(5), 1327. https://doi.org/10.3390/nano11051327