Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources
Abstract
:1. Introduction
Element | Adverse Effects on Human Health | Ref. |
---|---|---|
Lead (Pb) | Kidney damage, cognitive disorders, hypertension. | [19] |
Mercury (Hg) | Maternal and fetal toxicity; mental retardation, cerebral palsy, deafness, blindness, dysarthria; gastrointestinal tract toxicity: necrotic intestinal mucosa, abdominal pain, vomiting, bloody diarrhea. | [20,21] |
Arsenic (As) | Skin lesions, blackfoot disease, peripheral neuropathy, encephalopathy, hepatomegaly, liver cirrhosis, altered heme metabolism, myeloid depression, diabetes, proximal tubule degeneration, papillary and cortical necrosis. | [22,23] |
Chromium (Cr) | Skin rashes, stomach ulcers, weakened immune systems, kidney and liver damage, genetic material change, lung cancer; respiratory system issues: rhinitis, pharyngitis, laryngitis, bronchitis. | [24] |
Copper (Cu) | Wilsons’s disease, upper respiratory tract irritation, nasal mucosa, hemolytic anemia, epigastric pain, nausea, dizziness. | [25] |
Nickel (Ni) | Pneumoconiosis, asthma, lung and laryngeal cancer. | [26] |
Zinc (Zn) | Tachycardia, vascular shock, dyspepsia, nausea, headache, nasal and lung cancer, asthma, vomiting, diarrhea, hypoglycemia, pancreatitis and liver parenchyma damage, growth and reproduction disorders. | [27] |
Cadmium (Cd) | Kidney (proximal renal tubule cells), lung, liver, and vascular system damage; bone demineralization. | [28] |
2. Nanotechnology-Based Heavy Metal Analysis in Food and Water
2.1. Electrochemical Analysis by Nanosensors
2.1.1. Carbon-Based Nanomaterials
2.1.2. Magnetic Nanoparticles
2.1.3. Semiconducting Nanomaterials
2.1.4. Noble Metal Nanoparticles
Electrode | Analytical Technique | Sample | Linear Range | Limit of Detection | Ref. |
---|---|---|---|---|---|
Graphene/Bi/PGE | SWASV | Canadian-certified reference water sample and tap water sample | 5–100 μg/L Cd2+; Pb2+ | 0.12 μg/L Cd2+ 0.29 μg/L Pb2+ | [29] |
PA/PPy/GO | DPV | Tap water samples | 5–150 μg/L Cd2+; Pb2+ | 2.13 μg/L Cd2+ 0.41 μg/L Pb2+ | [30] |
[Ru(bpy)3]2+/GO/AuNPs | DPV | Cauvery river water | 0.02–3 μM Cd2+; Pb2+, 0.02–2 μM As3+; Hg2+ | 2.8 nM Cd2+ 1.41 nM Pb2+ 2.3 nM As3+ 1.6 nM Hg2+ | [33] |
MOF/GA/GCE | DPV | River water soil and vegetable sample (spinach) | 0.01−1.5 μM Cd2+, 0.001−2 μM Pb2+, 0.01−1.6 μM Cu2+, 0.001−2.2 μM Hg2+ | 0.02 μM Cd2+ 1.5 nM Pb2+ 7 nM Cu2+ 2 nM Hg2+ | [34] |
Bi/rGO/Au electrode | SWASV | Drinking water sample | 1.0–120.0 μg/L Cd2+; Pb2+ | 0.4 μg/L Pb2+ 1.0 μg/L Cd2+ | [36] |
PA6/CNW/rGO | DPV | Water sample | 2.5–200 μM Hg2+ | 5.2 nM Hg2+ | [38] |
SWCNTs/SiO2 | ISE | Drinking water sample | 10 nM−1 mM Hg2+ | 10 nM Hg2+ | [40] |
BMIM·BF4/MWCNTs/graphite powder | ISE | Water sample | 5.0 nM−1.0mM Hg2+ | 2.5 nM Hg2+ | [41] |
Graphene/MWCNTs/Bi | SWASV | Real electroplating effluent samples | 0.5–30 mg/L Pb2+; Cd2+ | 0.2 μg/L Pb2+ 0.1 μg/L Cd2+ | [42] |
L-g-MWCNTs/CPE | ISE | Soils, waste waters, lead accumulator waste and black tea | 5.9 nM − 1.0 mM Pb2+ | 3.2 nM Pb2+ | [43] |
SPANs/MCN/GCE | SWASV | River water sample | 5–80 nM Cd2+; Pb2+ | 0.7 nM Cd2+ 0.2 nM Pb2+ | [45] |
Poly (BPE)/g-C3N4 | DPV | Tap water samples | 0.12–7.2 μM Cd2+, 0.08–7.2 μM Pb2+, | 0.018 μM Cd2+ 0.00324 μM Pb2+ | [48] |
HCNs/GCE | SWASV | Drinking water sample | / | 0.6 nM Pb2+ | [49] |
Fe3O4/Bi/ILSPE | DPV | Soil sample | 0.5−40 μg/L Cd2+ | 0.05 μg/L Cd2+ | [51] |
SnO2/rGO/GCE | SWASV | Drinking water sample | 0.3–1.2 μM Hg2+; Cu2+; Cd2+; Pb2+ | 0.3 nM Hg2+ 0.2 nM Cu2+ 0.1 nM Cd2+ 0.2 nM Pb2+ | [52] |
PProDOT (MeSH)2/Si/GCE | DPV | Tap water sample | 0.04−2.8 μM Cd2+, 0.024−2.8 μM Pb2+, 0.16−3.2 μM Hg2+ | 0.00575 μM Cd2+ 0.0027 μM Pb2+ 0.0017 μM Hg2+ | [56] |
AuNPs/GCE | SWASV | Natural groundwater sample | 0.3–10 nM Hg2+ | 80 pM Hg2+ | [57] |
2.2. Colorimetric Analysis Based on Gold and Silver Nanoparticles
2.2.1. Gold Nanoparticles
2.2.2. Silver Nanoparticles
Electrode | Sample | Linear Range | Limits of Detection | Ref. |
---|---|---|---|---|
MPBA/AuNPs | Water samples | 0.01–5 μM Hg2+ | 8 nM Hg2+ | [61] |
(en)/S2O32−/AuNPs | Drinking water | 0.1–0.7 μM Co2+ | 0.04 μM (2.36 ppb) Co2+ | [62] |
4-MB/AuNPs (S2O32−) | River water, Montana soil, and urine samples | 0.5–10 nM Pb2+ | 0.2 nM Pb2+ | [63] |
Tween 20/Citrate ions/AuNPs | Drinking water and seawater sample | / | 0.1 μM Hg2+; Ag+ | [64] |
DTETAuNPs | Water sample | 1–6 μM Hg2+ | 100 nM Hg2+ | [67] |
AuNPs/g-CQDs | Mice organ tissues sample | 0.01–3.0 μM Cd2+ | 10 nM Cd2+ | [69] |
AuNPs/GO/S2O32− | Pure drinking water and river water samples | 0.1–20 μM Pb2+ | 0.05 μM Pb2+ | [70] |
TMA/AgNPs | Tap, lake, and river water sample | / | 0.5 nM Cu2+ | [71] |
SAA/AgNPs | Tap water, lake water, milk, urine, and serum sample | 0.05–1.1 μM Cd2+ | 3.0 nM Cd2+ | [72] |
AgNPs/biopolymer xylan | River water samples | 10–500 μM Hg2+ | 4.6 nM Hg2+ | [73] |
PAA/AgNCs | Tap water and mineral water samples | 0–20 μM Hg2+ | 2 nM Hg2+ | [74] |
Carr/Ag/AgCl NPs | Environmental or biological samples | 1–100 μM Hg2+ | 1 μM Hg2+ | [75] |
AgNPs | Metal ions sample | 3–30 nM Hg2+ | 0.037 nM Hg2+ | [76] |
2.3. Fluorescent Analysis by Nanofluorophores and Nanoquenchers
2.3.1. Quantum Dots
2.3.2. Gold Nanoclusters
2.3.3. Graphene and Its Derivatives
Electrode | Sample | Linear Range | Limits of Detectio | Ref. |
---|---|---|---|---|
EDTA/(CdTe) QDs/MPA | Zinc fortified table salts and energy drinks sample | 9.1–109.1 μM Zn2+ | 2 μM Zn2+ | [78] |
CA-CdS QDs | Real water sample | 10–5000 nM Cu2+ | 9.2 nM Cu2+ | [79] |
DTM/(CdTe/CdS) QDs | Tap water sample | 0.3–21 nM Hg2+ | 0.08 nM Hg2+ | [80] |
Mn/QDs (ZnSe/ZnS)/MPA | Real drinking water | 0–20 nM Hg2+ | 0.1 nM Hg2+ | [82] |
S, N-CQDs | Tap water sample | 0.065–198 μmol/L Cr(VI) | 0.56 nmol/L Cr(VI) | [85] |
N, S-CQDs | Tap, river and mineral waters and fish samples. | 0.1–20 μM Hg2+ 0.1–10 μM I− | 62 nM Hg2+ 72 nM I− | [86] |
hydrogel/CQDs | Water samples | 0–5 μM Hg2+ | 4 nM Hg2+ | [87] |
GQD | Water sample | / | 100 nM Cr3+ 100 nm Pb2+ | [88] |
CQDs/AuNCs | Aqueous solution | 10–1000 nM Ag+ | 2 nM Ag+ | [93] |
FITC–SiO2-amino groups -AuNCs | Water samples | 0.1–10 nM Hg2+ | 0.1 nM Hg2+ | [94] |
11-MUA-AuNCs-CQDs-SiO2 | Real water samples and human serum samples | 0.025–4 μM Cu2+ | 0.013 μM Cu2+ | [95] |
S2O32−/2-ME/AuNPs/G | Tap water and mineral water samples | 50–1000 nM Pb2+ | 10 nM Pb2+ | [96] |
GO | Aqueous solution | 0–120 μM Fe3+ | 4.6 μM Fe3+ | [99] |
GO/8-HQ | Aqueous solution | 0.05-1.5 μM (Zn2+) | / | [101] |
GCNNs | Water and milk samples | 0.001–1.0 μM Hg2+ | 0.3 nM Hg2+ | [103] |
2.4. Nanomaterial-Improved Biosensing
2.4.1. Gold and Silver Nanoparticles
2.4.2. Quantum Dots
2.4.3. Magnetic Nanoparticles
2.4.4. Graphene and Its Derivatives
2.4.5. Other Materials
Electrode | Analytical Technique | Sample | Linear Range | Limits of Detection | Aptamer Sequence | Ref. |
---|---|---|---|---|---|---|
AuNPs-aptamer | Colorimetry | Water samples | /1 nM–0.1 mM Hg2+ | 0.6 nM Hg2+ | 5′-TTTTTTTTTT-3′(Hg2+); 5′-CCAACCACAC-3′ (Control random oligonucleotide sequence) | [115] |
FMs/AuNPs-aptamer | Fluorometry | River water samples | 0.13–4 ng/mL Hg2+ | 0.13 ng/mL Hg2+ | MRP: 5′-biotin-AAA AAA AAA ATT CTT TCT TCC CCT TGT TTG TT-3′; T-line Probe1: 5′-biotin-AAA AAA AAA ACA CAA ACA AGG CCA ACA-3′ | [117] |
(AuNPs/CS)2-GCE- aptamer | Electrochemical | Tap water samples | 0.01–500 nM Hg2+ | 0.005 nM Hg2+ | 5′-HS-(CH2)6-TCA TGT TTG TTT GTT GGC CCC CCT TCT TTC TTA-Fc-3′ | [119] |
GSH/AgNPs (Cys) | Colorimetry | Water samples | 0.4–4.0 μM Al3+ | 1.2 μM (eyes) Al3+ 0.16 μM (UV) Al3+ | / | [122] |
AgNPs/NaCysC | Colorimetry | Tap water and drinking water | 5–50 nM Hg2+ | 8 nM Hg2+ | / | [124] |
CdS (QDs)/GSH | Fluorometry | Industrial wastewater sample | 10 nM–20 μM Cd2+ | 0.54 nM Cd2+ | / | [127] |
CdSe (QDs) Bacillus licheniformis cells | Fluorometry | Complex solution environment | 0–20 μM Cu2+ | 0.91 μM Cu2+ | / | [130] |
DNA/Fe3O4/AuNPs/MGCE | Electrochemical | Taihu Lake water, drinking water, orange juice and red wine sample | 10–150 nM Ag+ 10–100 nM Hg2+ | 3.4 nM Ag+ 1.7 nM Hg2+ | DNA1 (thiolate), DNA2 (Fc and MB) | [133] |
Fe-MOF/mFe3O4mC-aptamer | Electrochemical | River water samples | 0.01–10.0 nM Pb2+ | 2.2 pM Pb2+ | 5′-CAA-CGG-TGG-GTG-TGG-TTGG-3′ | [136] |
Fe-MOF/mFe3O4mC-aptamer | Electrochemical | River water samples | 0.01–10.0 nM As3+ | 6.73 pM As3+ | 5′-GGT-AAT-ACG-ACT-CAC-TAT-AGG-GAG-ATA-CCA-GCT-TAT-TCAATT-TTA-CAG-AAC -AAC-CAA-CGT-CGC-TCC-GGG-TAC-TTC-TTC-ATC-GAG-ATA-GTAAGT-GCA-ATCT-3′ | [136] |
Au-PWE/((Fe-P)n-MOF-Au-GR) | Electrochemical | Water, fruit juice soil sample | 0.03–1000 Pb2+ | 0.02 Pb2+ | / | [138] |
PDA/rGO/DNA/GCE | Electrochemical | Kunyu River sample | 8–100 nM Hg2+ | 5 nM Hg2+ | Probe DNA (NH2−ssDNA: 5′-NH2−(CH2)6-GAT-TCC-GTG-CAT-GAC-TCA-G-3′) Target DNA (4-Mis DNA:5′-C-TGT-GTC-TTG-CTC-GGT-ATC-3′) Control DNA (5′-GAT-TCC-GTG-CAT-GAC-TCA-G-3′) | [141] |
GO/aptamer- CdSe/ZnS (QDs) | Fluorometry | River water samples | 0.1–10 nM Pb2+ | 90 pM Pb2+ | 5′-NH2−(CH2)6–GGGTGGGTGGGTGGGT–3′ | [142] |
GO/Au electrode (Thiol-PTO) | Electrochemical | Drinking water | 1–300 nM Hg2+ | 1 nM Hg2+ | (Thiol-PTO) (SH-C6-5′TTT-TTT-TTT-TTT-TTT-TTT-TTT-TTT-TTT-TTT-3′) | [145] |
Long strand aptamer UCNPs/AuNPs-Short strand aptamer | Fluorometry | Tap water and milk samples | 0.2–20 μM Hg2+ | 60 nM Hg2+ | 5’NH2C6-CTA CAG TTT CAC CTT TTC CCC CGT TTT GGT GTT T-3′ (Long stranded aptamer), (short-stranded aptamer) 5’SHC6-GAA ACT GTA G-3’ | [148] |
CQDs/AuNPs/GSH | Colorimetry | Environmental Water samples | 10–300 nM Hg2+ | 7.5 nM Hg2+ | / | [149] |
3. Nanotechnology-Based Heavy Metal Removal in Food and Water
3.1. Metal Oxide Nanoparticles
3.2. Magnetic Nanoparticles
3.3. Graphene and Its Derivatives
3.4. Carbon Nanotubes
3.5. Nanocomposite Films
3.6. Other Nanomaterials
Nanomaterial | Contact Time | Adsorbed Metal | Removal Efficiency (mg/g) | Ref. |
---|---|---|---|---|
1T-MoS2; M-MoS2; 2H-MoS2 | 24 h | Cr(VI) 1000 mg/L | 200.3 1T-MoS2; 82.8 M-MoS2; 70.7 2H-MoS2 | [152] |
CuO | 2 h | Cr(VI) 20 mg/L | 15.625 Cr(VI) | [157] |
Organo-modified MTS | 30 min | Cr3+ 0.2g | 13.81 Cr3+ | [158] |
Fe3O4/SiO2/polythiophene | 6.8 min | Hg2+ 40 μg/L | 59 Hg2+ (sorption capacity) | [159] |
Fe3O4/PANI/MnO2 | 30 min | Cd2+ | 99.1% (154) | [162] |
MnO2/ Fe3O4/PmPD | 24 h | Pb2+ 1.2 ppm, Cd2+ | 438.6 Pb2+;121.5 Cd2+ | [164] |
PPy–mPD/Fe3O4 | 24 h | Cr(VI) 100-600mg/L | 99.6% (25 °C; 100mg/L Cr(VI)); 555.6 (maximum adsorption capacity) | [167] |
EDTA/ Fe3O4/SC | 2 h | Cd2+ 30 mg/L | 63.3 Cd2+ | [169] |
nZVN | 5 h | Cr(VI) | Cr(VI) (98%), 60.0 (adsorption capacity); 0.6699/min (26 °C); 0.7956/min (30 °C); 1.0251/min (36 °C) | [173] |
PPy/Fe3O4/rGO | 12 h | Cr(VI) | 293.3 Cr(VI) | [177] |
rGO/Fe3O4 (PANI) | 5 h | Hg2+ 125.45mg/L | 375 Hg2+ | [180] |
MGO/SiO2/CN | 40 min | Pb2+ | 111.11 Pb2+ | [182] |
MWCNTs | 2 h | Hg2+ 0.1 mg/L | 0.486 Hg2+ | [185] |
MWCNTs (amine and -SH) | 5 min | Hg2+ | 84.66 (88.7%) | [186] |
e-MWCNTs | 30 min | Cd2+ 5 mg/L | 25.7 Cd2+ | [190] |
PSF-GO | 10.5 h Cr6+ 12 h Cd2+ 13 h Cu2+ 15 h Pb2+ | Pb2+, Cu2+, Cd2+, Cr(VI) 500 mg/L | 78.50 Pb2+, 68.30 Cu2+, 75.60 Cd2+, 159.50 Cr(VI) | [193] |
s-PBC/GO | 180 min | (1000mg/L) | 74.2 Co2+, 93 Ni2+, 229.4 Pb2+, | [194] |
MOF/iNPs | 3 h | As3+, As(V), Cd2+, Cr3+, Cu2+, Pb2+ and Hg 2+ | Cu2+ 65%; Cr3+ 99% ; Cu2+ 99% ;Pb2+ 99%; Hg2+ 99% ; As(V) 86% ; | [198] |
CNCs-g-nBA | 360 min | Pb2+ 125 mg/L | 140.95 Pb2+ | [201] |
Nanofiber (PVA/SA ratios (40/60)) | 100 min | Cd2+ 40 ppm | Cd2+ 67.05 (max) | [208] |
T/G | 30 min | As3+ | As3+ 98%(T) | [212] |
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antoun, H.; Kloepper, J. Plant Growth Promoting Rhizobacteria (PGPR). Encycl. Genet. 2001, 1477–1480. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Tuzen, M.; Soylak, M. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 2009, 162, 724–729. [Google Scholar] [CrossRef] [PubMed]
- El-Araby, E.H.; Abd El-Wahab, M.; Diab, H.M.; El-Desouky, T.M.; Mohsen, M. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma. Appl. Radiat. Isot. 2011, 69, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, G.D.; Newton, M.E.; Macpherson, J.V. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. Anal. Chem. 2015, 87, 4933–4940. [Google Scholar] [CrossRef] [PubMed]
- Obiajunwa, E.I.; Pelemo, D.A.; Owolabi, S.A.; Fasasi, M.K.; Johnson-Fatokun, F.O. Characterisation of heavy metal pollutants of soils and sediments around a crude-oil production terminal using EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2002, 194, 61–64. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Hao, Q.; Kang, L.; Kang, C.; Yang, J.; Yang, W.; Jiang, J.; Huang, L.Q.; Guo, L. Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis. Chin. Med. 2018, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Djedjibegovic, J.; Larssen, T.; Skrbo, A.; Marjanović, A.; Sober, M. Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem. 2012, 131, 469–476. [Google Scholar] [CrossRef]
- Moor, C.; Lymberopoulou, T.; Dietrich, V.J. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Mikrochim. Acta 2001, 136, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, M.R.; Matbouie, Z.; Asgharinezhad, A.A.; Dehghani, A. Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim. Acta 2013, 180, 589–597. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Kheriji, J.; Tabassi, D.; Hamrouni, B. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci. Technol. 2015, 72, 1206–1216. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Sci. Total Environ. 2019, 674, 355–362. [Google Scholar] [CrossRef]
- Ates, N.; Uzal, N. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ. Sci. Pollut. Res. 2018, 25, 22259–22272. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H. ScienceDirect The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2018, 27, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cao, H.; Zhang, Y.; Zhang, Y.; Ma, J.; Wang, J.; Gao, Y.; Zhang, X.; Zhang, F.; Chu, L. Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol. Lett. 2013, 218, 273–280. [Google Scholar] [CrossRef]
- Boucher, O.; Muckle, G.; Jacobson, J.L.; Carter, R.C.; Kaplan-Estrin, M.; Ayotte, P.; Dewailly, É.; Jacobson, S.W. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the environmental contaminants and child development study in nunavik. Environ. Health Perspect. 2014, 122, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Bernhoft, R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Bagchi, D.; Stohs, S.J.; Downs, B.W.; Bagchi, M.; Preuss, H.G. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 2002, 180, 5–22. [Google Scholar] [CrossRef]
- Martínez, C.E.; Motto, H.L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 2000, 107, 153–158. [Google Scholar] [CrossRef]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Kiliç, H.D.; Kizil, H. Simultaneous analysis of Pb2+ and Cd2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry. Anal. Bioanal. Chem. 2019, 411, 8113–8121. [Google Scholar] [CrossRef]
- Dai, H.; Wang, N.; Wang, D.; Ma, H.; Lin, M. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem. Eng. J. 2016, 299, 150–155. [Google Scholar] [CrossRef]
- Li, J.; Xie, H. Synthesis of graphene oxide/polypyrrole nanowire composites for supercapacitors. Mater. Lett. 2012, 78, 106–109. [Google Scholar] [CrossRef]
- Bora, C.; Dolui, S.K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 53, 923–932. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Veerapandian, M.; Krishnan, U.M.; Rayappan, J.B.B. Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 2017, 162, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S.W.; Wang, J. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2019, 91, 888–895. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef]
- Xuan, X.; Hossain, M.F.; Park, J.Y. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chinnappan, A.; Baskar, C.; Baskar, S.; Ratheesh, G.; Ramakrishna, S. An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. J. Mater. Chem. C 2017, 5, 12657–12673. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Facure, M.H.M.; Correa, D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II). Carbohydr. Polym. 2019, 207, 747–754. [Google Scholar] [CrossRef]
- Lau, K.K.S.; Bico, J.; Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; McKinley, G.H.; Gleason, K.K. Superhydrophobic carbon nanotube forests. Nano Lett. 2003, 3, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Lee, J.; Hong, S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J. Phys. Chem. C 2009, 113, 19393–19396. [Google Scholar] [CrossRef]
- Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater. 2010, 183, 402–409. [Google Scholar] [CrossRef]
- Huang, H.; Chen, T.; Liu, X.; Ma, H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal. Chim. Acta 2014, 852, 45–54. [Google Scholar] [CrossRef]
- Guo, J.; Chai, Y.; Yuan, R.; Song, Z.; Zou, Z. Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples. Sens. Actuators B Chem. 2011, 155, 639–645. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, L.; Xie, X.; Zeng, G.; Wang, J.; Deng, Y.; Yang, G.; Zhang, C.; Chen, J. Sensitive impedimetric biosensor based on duplex- like DNA scaffolds and ordered mesoporous carbon nitride for silver (I) ion detection. Analyst 2014, 139, 6529–6535. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Tang, L.; Zeng, G.; Zhang, J.; Peng, B.; Xie, X.; Lai, C.; Long, B.; Zhu, J. Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and squarewave anodic stripping voltammetry. Nanomaterials 2016, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.; Salehniya, H.; Habibi-Yangjeh, A. Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in Real Samples. Ind. Eng. Chem. Res. 2016, 55, 8114–8122. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, L.; Zeng, G.; Chen, J.; Cai, Y.; Zhang, Y.; Yang, G.; Liu, Y.; Zhang, C.; Tang, W. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosens. Bioelectron. 2014, 61, 519–525. [Google Scholar] [CrossRef]
- Ding, S.; Ali, A.; Jamal, R.; Xiang, L.; Zhong, Z.; Abdiryim, T. An electrochemical sensor of poly(EDOT-pyridine- EDOT)/graphitic carbon nitride composite for simultaneous detection of Cd2+ and Pb2+. Materials 2018, 11, 702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.H.; Li, W.C.; Yan, D.; Wang, H.; Lu, A.H. Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes. Nanoscale 2016, 8, 13695–13700. [Google Scholar] [CrossRef]
- Widder, K.J.; Senyei, A.E.; Ovadia, H.; Paterson, P.Y. Magnetic protein A microspheres: A rapid method for cell separation. Clin. Immunol. Immunopathol. 1979, 14, 395–400. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Yin, Y.; Wang, Z.; Liu, G. Screen-printed electrode modified by bismuth /Fe3O4 nanoparticle/ionic liquid composite using internal standard normalization for accurate determination of Cd(II) in soil. Sensors 2018, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Gao, C.; Meng, F.L.; Li, H.H.; Wang, L.; Liu, J.H.; Huang, X.J. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference. J. Phys. Chem. C 2012, 116, 1034–1041. [Google Scholar] [CrossRef]
- Guo, Z.; Seol, M.L.; Gao, C.; Kim, M.S.; Ahn, J.H.; Choi, Y.K.; Huang, X.J. Functionalized porous Si nanowires for selective and simultaneous electrochemical detection of Cd(II) and Pb(II) ions. Electrochim. Acta 2016, 211, 998–1005. [Google Scholar] [CrossRef]
- Abdiryim, T.; Ubul, A.; Jamal, R.; Xu, F.; Rahman, A. Electrochemical properties of the carbon nanotubes composite synthesized by solid-state heating method. Synth. Met. 2012, 162, 1604–1608. [Google Scholar] [CrossRef]
- Lamy, M.; Darmanin, T.; Guittard, F. Highly hydrophobic films with high water adhesion by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups. Colloid Polym. Sci. 2015, 293, 933–940. [Google Scholar] [CrossRef]
- Abdulla, M.; Ali, A.; Jamal, R.; Bakri, T.; Wu, W.; Abdiryim, T. Electrochemical sensor of double-thiol linked PProDOT@Si composite for simultaneous detection of Cd(II), Pb(II), and Hg(II). Polymers 2019, 11, 815. [Google Scholar] [CrossRef] [Green Version]
- Laffont, L.; Hezard, T.; Gros, P.; Heimbürger, L.E.; Sonke, J.E.; Behra, P.; Evrard, D. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta 2015, 141, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef]
- Liu, S.; Du, Z.; Li, P.; Li, F. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding. Biosens. Bioelectron. 2012, 35, 443–446. [Google Scholar] [CrossRef]
- Liu, D.; Qu, W.; Chen, W.; Zhang, W.; Wang, Z.; Jiang, X. Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal. Chem. 2010, 82, 9606–9610. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; Liu, L.; Li, M.; Xiao, K.; Xu, M. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens. Actuators B Chem. 2014, 196, 106–111. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Lou, T.; Pan, D.; Chen, L.; Qu, C.; Chen, Z. Label-free colorimetric sensing of cobalt(ii) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine. Analyst 2012, 137, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.L.; Hsiung, T.M.; Chen, Y.Y.; Huang, C.C. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta 2010, 82, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Yu, C.J.; Lin, Y.H.; Tseng, W.L. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal. Chem. 2010, 82, 6830–6837. [Google Scholar] [CrossRef]
- Huang, C.C.; Chang, H.T. Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. 2007, 12, 1215–1217. [Google Scholar] [CrossRef]
- You, J.; Hu, H.; Zhou, J.; Zhang, L.; Zhang, Y.; Kondo, T. Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II). Langmuir 2013, 29, 5085–5092. [Google Scholar] [CrossRef]
- Kim, Y.R.; Mahajan, R.K.; Kim, J.S.; Kim, H. Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous Media. ACS Appl. Mater. Interfaces 2010, 2, 292–295. [Google Scholar] [CrossRef]
- Hirayama, T.; Taki, M.; Kashiwagi, Y.; Nakamoto, M.; Kunishita, A.; Itoh, S.; Yamamoto, Y. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface. Dalt. Trans. 2008, 4705–4707. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Liu, H.; Mao, X.; Liu, W.; Zhang, S.; Nie, Z.; Lu, X. Ultratrace and robust visual sensor of Cd2+ ions based on the size-dependent optical properties of Au@g-CNQDs nanoparticles in mice models. Biosens. Bioelectron. 2018, 103, 87–93. [Google Scholar] [CrossRef]
- Shi, X.; Gu, W.; Zhang, C.; Zhao, L.; Peng, W.; Xian, Y. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide. Dalt. Trans. 2015, 44, 4623–4629. [Google Scholar] [CrossRef]
- Tharmaraj, V.; Yang, J. Sensitive and selective colorimetric detection of Cu2+ in aqueous medium via aggregation of thiomalic acid functionalized Ag nanoparticles. Analyst 2014, 139, 6304–6309. [Google Scholar] [CrossRef]
- Jin, W.; Huang, P.; Wu, F.; Ma, L.H. Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst 2015, 140, 3507–3513. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, S.; Luo, J.; Wang, X.; Sun, R. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale 2015, 7, 690–700. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions. Talanta 2012, 88, 290–294. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Han, S.S. Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles. Carbohydr. Polym. 2017, 160, 90–96. [Google Scholar] [CrossRef]
- Azimpanah, R.; Solati, Z.; Hashemi, M. Green synthesis of silver nanoparticles and their applications as colorimetric probe for determination of Fe3+ and Hg2+ ions. IET Nanobiotechnol. 2018, 12, 673–677. [Google Scholar] [CrossRef]
- Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929. [Google Scholar] [CrossRef]
- Liu, W.; Wei, F.; Xu, G.; Wu, Y.; Hu, C.; Song, Q.; Yang, J.; Hu, Q. Ethylene diamine tetraacetic acid etched quantum dots as a “turn-on” fluorescence probe for detection of trace zinc in food. J. Nanosci. Nanotechnol. 2016, 16, 6511–6519. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; Zou, T.; Yang, Y.; Xing, X.; Zhao, R.; Wang, Z.; Wang, Y. Citric acid capped CdS quantum dots for fluorescence detection of copper ions (II) in aqueous solution. Nanomaterials 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Hallaj, R.; Hosseinchi, Z.; Babamiri, B.; Zandi, S. Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg2+ fluorescence sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 418–423. [Google Scholar] [CrossRef]
- Zhao, B.; Yao, Y.; Yang, K.; Rong, P.; Huang, P.; Sun, K.; An, X.; Li, Z.; Chen, X.; Li, W. Mercaptopropionic acid-capped Mn2+:ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications. Nanoscale 2014, 6, 12345–12349. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Li, X.; Zhao, Q.; Hou, Y.; Chen, J. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. Sci. Rep. 2014, 4, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Wei, J.S.; Xiong, H.M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014, 6, 13817–13823. [Google Scholar] [CrossRef]
- Dong, Y.; Pang, H.; Yang, H.B.; Guo, C.; Shao, J.; Chi, Y.; Li, C.M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. Engl. 2013, 52, 7800–7804. [Google Scholar] [CrossRef]
- Song, S.; Liang, F.; Li, M.; Du, F.; Dong, W.; Gong, X.; Shuang, S.; Dong, C. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 58–68. [Google Scholar] [CrossRef]
- Tabaraki, R.; Sadeghinejad, N. Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off–on fluorescent sensor for mercury (II) and iodide in environmental samples. Ecotoxicol. Environ. Saf. 2018, 153, 101–106. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, M.; Yang, C. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Raj, S.K.; Yadav, V.; Bhadu, G.R.; Patidar, R.; Kumar, M.; Kulshrestha, V. Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623. [Google Scholar] [CrossRef]
- Xie, J.; Zheng, Y.; Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef]
- Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yuan, Y.; Liang, G.; Arshad, M.N.; Albar, H.A.; Sobahi, T.R.; Yu, S.H. A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chem. Commun. 2015, 51, 10539–10542. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Li, Y.; Hu, X.; Yan, Q.; Jiang, J.; Yu, M.; Peng, T.; He, G. Paper-based visual detection of silver ions and l-cysteine with a dual-emissive nanosystem of carbon quantum dots and gold nanoclusters. Anal. Methods 2018, 10, 3945–3950. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, H.; Ning, B.; Guo, Z.B.; Li, N.; Chen, L.; Huang, G.; Li, C.; Zheng, B. Ratiometric fluorescent nanoprobe for highly sensitive determination of mercury ions. Molecules 2019, 24, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Jia, L.; Wang, Y.; Wang, M.; Gao, Z.; Ren, X. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Anal. Bioanal. Chem. 2019, 411, 2531–2543. [Google Scholar] [CrossRef]
- Fu, X.; Lou, T.; Chen, Z.; Lin, M.; Feng, W.; Chen, L. “Turn-on” Fluorescence Detection of Lead Ions Based on Accelerated Leaching of Gold Nanoparticles on the Surface of Graphene. ACS Appl. Mater. Interfaces 2012, 4, 1080–1086. [Google Scholar] [CrossRef]
- Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 2010, 46, 7319–7321. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Xin, J.H. A novel graphene oxide-based fluorescent nanosensor for selective detection of Fe3+ with a wide linear concentration and its application in logic gate. Biosens. Bioelectron. 2015, 70, 69–73. [Google Scholar] [CrossRef]
- Gurnani, V.; Singh, A.K.; Venkataramani, B. Cellulose functionalized with 8-hydroxyquinoline: New method of synthesis and applications as a solid phase extractant in the determination of metal ions by flame atomic absorption spectrometry. Anal. Chim. Acta 2003, 485, 221–232. [Google Scholar] [CrossRef]
- Eftekhari-Sis, B.; Rezazadeh, Z.; Akbari, A.; Amini, M. 8-Hydroxyquinoline Functionalized Graphene Oxide: An Efficient Fluorescent Nanosensor for Zn2+ in Aqueous Media. J. Fluoresc. 2018, 28, 1173–1180. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wang, X. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108. [Google Scholar] [CrossRef]
- Zhuang, Q.; Sun, L.; Ni, Y. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 2017, 164, 458–462. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Immunosensors: Electrochemical sensing and other engineering approaches. Biosens. Bioelectron. 1998, 13, 113–131. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Rastogi, N.K. Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens. Actuators B Chem. 2016, 229, 570–580. [Google Scholar] [CrossRef]
- Salehnia, F.; Hosseini, M.; Ganjali, M.R. A fluorometric aptamer based assay for cytochrome C using fluorescent graphitic carbon nitride nanosheets. Microchim. Acta 2017, 184, 2157–2163. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, X.; Lu, P.Y.; Rosato, R.R.; Tan, W.; Zu, Y. Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids 2014, 3, e182. [Google Scholar] [CrossRef]
- Kubo, I.; Eguchi, T. Study on electrochemical insulin sensing utilizing a DNA aptamer-immobilized gold electrode. Materials 2015, 8, 4710–4719. [Google Scholar] [CrossRef] [Green Version]
- Reinemann, C.; Freiin von Fritsch, U.; Rudolph, S.; Strehlitz, B. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens. Bioelectron. 2016, 77, 1039–1047. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Liu, H.; Zhang, X.; Tan, W. Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine 2013, 8, 983–993. [Google Scholar] [CrossRef]
- Navani, N.K.; Li, Y. Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 2006, 10, 272–281. [Google Scholar] [CrossRef]
- Ou, T.M.; Lu, Y.J.; Tan, J.H.; Huang, Z.S.; Wong, K.Y.; Gu, L.Q. G-quadruplexes: Targets in anticancer drug design. ChemMedChem 2008, 3, 690–713. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Y.; Chen, H.G.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Ultrasensitive label-free resonance rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling andgrowth of G-wires for signal amplification. Anal. Chem. 2016, 88, 1385–1390. [Google Scholar] [CrossRef]
- Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009, 393, 2051–2057. [Google Scholar] [CrossRef]
- Khreich, N.; Lamourette, P.; Lagoutte, B.; Ronco, C.; Franck, X.; Créminon, C.; Volland, H. A fluorescent immunochromatographic test using immunoliposomes for detecting microcystins and nodularins. Anal. Bioanal. Chem. 2010, 397, 1733–1742. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, H.; Hu, J.; Fu, Q.; Yao, C.; Yu, S.; Xiao, W.; Tang, Y. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal. Bioanal. Chem. 2017, 409, 5209–5216. [Google Scholar] [CrossRef] [PubMed]
- Taei, M.; Hasanpour, F.; Dinari, M.; Sohrabi, N.; Jamshidi, M.S. Synthesis of 5-[(2-hydroxynaphthalen-1-yl)diazenyl]isophthalic acid and its application to electrocatalytic oxidation and determination of adrenaline, paracetamol, and tryptophan. Chin. Chem. Lett. 2017, 28, 240–247. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Li, T.; Chen, Z.; Chen, H.; Li, S.; Liu, H. Aptamer-based electrochemical biosensor for mercury ions detection using aunps-modified glass carbon electrode. J. Biomed. Nanotechnol. 2018, 14, 2156–2161. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D.T.; Xie, J. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, K.; Yang, X.D.; Wang, L.L.; Shen, R.F. Complexation of Al(III) with reduced glutathione in acidic aqueous solutions. J. Inorg. Biochem. 2009, 103, 657–665. [Google Scholar] [CrossRef]
- Yang, N.; Gao, Y.; Zhang, Y.; Shen, Z.; Wu, A. A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. Talanta 2014, 122, 272–277. [Google Scholar] [CrossRef]
- Annadhasan, M.; SankarBabu, V.R.; Naresh, R.; Umamaheswari, K.; Rajendiran, N. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Colloids Surf. B Biointerfaces 2012, 96, 14–21. [Google Scholar] [CrossRef]
- Annadhasan, M.; Rajendiran, N. Highly selective and sensitive colorimetric detection of Hg(II) ions using green synthesized silver nanoparticles. RSC Adv. 2015, 5, 94513–94518. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, X.; Yang, Y.; Zhao, R.; Zou, T.; Wang, Z.; Wang, Y. One-step hydrothermal synthesis of thioglycolic acid capped CdS quantum dots as fluorescence determination of cobalt ion. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Singh, A.; Guleria, A.; Kunwar, A.; Neogy, S.; Rath, M.C. Saccharide capped CdSe quantum dots grown via electron beam irradiation. Mater. Chem. Phys. 2017, 199, 609–615. [Google Scholar] [CrossRef]
- Kaur, J.; Komal, F.; Renu, K.; Kumar, V.; Tikoo, K.B.; Bansal, S.; Kaushik, A.; Singhal, S. Glutathione modified fluorescent CdS QDs synthesized using environmentally Benign pathway for detection of mercury ions in aqueous phase. J. Fluoresc. 2020, 30, 773–785. [Google Scholar] [CrossRef]
- Bu, X.; Zhou, Y.; He, M.; Chen, Z.; Zhang, T. Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(ii) ion detection. Dalt. Trans. 2013, 42, 15411–15420. [Google Scholar] [CrossRef]
- Jacob, J.M.; Sharma, S.; Balakrishnan, R.M. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. J. Hazard. Mater. 2017, 324, 54–61. [Google Scholar] [CrossRef]
- Kominkova, M.; Milosavljevic, V.; Vitek, P.; Polanska, H.; Cihalova, K.; Dostalova, S.; Hynstova, V.; Guran, R.; Kopel, P.; Richtera, L.; et al. Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots. J. Biotechnol. 2017, 241, 193–200. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Du, Q.Q.; Wan, D.Y.; Lv, H.; Cao, Z.R.; Wu, S.M. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water. Enzyme Microb. Technol. 2017, 107, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lu, Y.; Li, Y.; Jiang, J.; Cheng, L.; Liu, Z.; Guo, L.; Pan, Y.; Gu, H. Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale 2014, 6, 199–202. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for Simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef]
- Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, H.; Zhu, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G.; Chen, Z.N. Metal-organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA. Analyst 2013, 138, 3490–3493. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, H.; Song, Y.; Zhang, S.; Wang, M.; Jia, C.; Tian, J.Y.; He, L.; Zhang, X.; Liu, C. Sen Fe(III)-based metal–organic framework-derived core–shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens. Bioelectron. 2017, 94, 358–364. [Google Scholar] [CrossRef]
- McKinlay, A.C.; Morris, R.E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 2010, 49, 6260–6266. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Zhu, S.; Yan, M.; Ge, S.; Yu, J. 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens. Bioelectron. 2017, 87, 108–115. [Google Scholar] [CrossRef]
- Bonanni, A.; Ambrosi, A.; Pumera, M. Nucleic acid functionalized graphene for biosensing. Chem. Eur. J. 2012, 18, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Pumera, M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 2011, 5, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, H.; Wu, Z.; Xue, Y.; Zhang, X.; He, Y.; Li, X.; Yuan, Z. A novel graphene-DNA biosensor for selective detection of mercury ions. Biosens. Bioelectron. 2013, 48, 180–187. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Guo, S.; Wu, N. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013, 43, 69–74. [Google Scholar] [CrossRef]
- Wu, M.; Kempaiah, R.; Huang, P.J.J.; Maheshwari, V.; Liu, J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 2011, 27, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wu, H.; Cort, J.R.; Buchko, G.W.; Zhang, Y.; Shao, Y.; Aksay, I.A.; Liu, J.; Lin, Y. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 2010, 6, 1205–1209. [Google Scholar] [CrossRef]
- Park, H.; Hwang, S.J.; Kim, K. An electrochemical detection of Hg2+ ion using graphene oxide as an electrochemically active indicator. Electrochem. Commun. 2012, 24, 100–103. [Google Scholar] [CrossRef]
- Lim, S.F.; Riehn, R.; Ryu, W.S.; Khanarian, N.; Tung, C.K.; Tank, D.; Austin, R.H. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett. 2006, 6, 169–174. [Google Scholar] [CrossRef]
- Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 710–729. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. Turn-On fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. [Google Scholar] [CrossRef]
- Wang, F.; Sun, J.; Lu, Y.; Zhang, X.; Song, P.; Liu, Y. Dispersion-aggregation-dispersion colorimetric detection for mercury ions based on an assembly of gold nanoparticles and carbon nanodots. Analyst 2018, 143, 4741–4746. [Google Scholar] [CrossRef]
- Lavecchia, R.; Medici, F.; Patterer, M.S.; Zuorro, A. Lead removal from water by adsorption on spent coffee grounds. Chem. Eng. Trans. 2016, 47, 295–300. [Google Scholar] [CrossRef]
- Guo, B.; Ji, S.; Zhang, F.; Yang, B.; Gu, J.; Liang, X. Preparation of C18-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles for extraction and determination of phthalic acid esters in Chinese herb preparations. J. Pharm. Biomed. Anal. 2014, 100, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, R.; Hu, Z.; Li, W.; Zhou, H.; Kang, S.; Zhang, Y.; Zhang, H.; Wang, G. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr(VI). J. Hazard. Mater. 2020, 394, 122525. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, X.; Bao, S.; Zhang, Z.; Fei, H.; Wu, Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Yu, H.; Li, N.; Zhang, J.; Meng, J.; Liao, M.; Zhao, J.; Lu, X.; Du, L.; et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, B.; Zhou, J.; Si, J.; Fang, Z.; Li, K.; Ma, H.; Dai, J.; Zhu, X.; Sun, Y. Glucose-induced synthesis of 1T-MoS2 /C hybrid for high-rate lithium-ion batteries. Small 2019, 15, e1805420. [Google Scholar] [CrossRef]
- Gupta, V.K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 2016, 478, 54–62. [Google Scholar] [CrossRef]
- Gervas, C.; Mubofu, E.B.; Mdoe, J.E.G.; Revaprasadu, N. Functionalized mesoporous organo-silica nanosorbents for removal of chromium (III) ions from tanneries wastewater. J. Porous Mater. 2016, 23, 83–93. [Google Scholar] [CrossRef]
- Abolhasani, J.; Hosseinzadeh Khanmiri, R.; Babazadeh, M.; Ghorbani-Kalhor, E.; Edjlali, L.; Hassanpour, A. Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ. Monit. Assess. 2015, 187, 554. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, D.; Chang, Y.; Xing, S.; Wu, Y.; Gao, Y. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal. Dalt. Trans. 2013, 42, 14261–14267. [Google Scholar] [CrossRef]
- Cao, S.; Han, N.; Han, J.; Hu, Y.; Fan, L.; Zhou, C.; Guo, R. Mesoporous hybrid shells of carbonized polyaniline/Mn2O3 as non-precious efficient oxygen reduction reaction catalyst. ACS Appl. Mater. Interfaces 2016, 8, 6040–6050. [Google Scholar] [CrossRef]
- Zhang, J.; Han, J.; Wang, M.; Guo, R. Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A 2017, 5, 4058–4066. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Li, C.; Yang, W.; Song, T.; Tang, C.; Meng, Y.; Dai, S.; Wang, H.; Chai, L.; et al. Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 2015, 49, 5654–5662. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.; Cao, X.; Wang, H.; Jiang, L.; Wu, Z.; Liu, Y. Mechanistic insights into heavy metals affinity in magnetic MnO2@Fe3O4/poly(m-phenylenediamine) core−shell adsorbent. Ecotoxicol. Environ. Saf. 2020, 192, 110326. [Google Scholar] [CrossRef]
- Yuan, Z.; Cheng, X.; Zhong, L.; Wu, R.; Zheng, Y. Preparation, characterization and performance of an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution. J. Environ. Sci. 2019, 77, 75–84. [Google Scholar] [CrossRef]
- Wang, J.; Pan, K.; He, Q.; Cao, B. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013, 244–245, 121–129. [Google Scholar] [CrossRef]
- Maponya, T.C.; Ramohlola, K.E.; Kera, N.H.; Modibane, K.D.; Maity, A.; Katata-Seru, L.M.; Hato, M.J. Influence of magnetic nanoparticles on modified polypyrrole/m-phenylediamine for adsorption of Cr(VI) from aqueous solution. Polymers 2020, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J. Mater. Chem. A 2013, 1, 959–965. [Google Scholar] [CrossRef]
- Kataria, N.; Garg, V.K. Green Synthesis of Fe3O4 Nanoparticles Loaded Sawdust Carbon for Cadmium (II) Removal from Water: Regeneration and mechanism; Elsevier: Amsterdam, The Netherlands, 2018; Volume 208, ISBN 9198120581. [Google Scholar]
- Sohn, K.; Kang, S.W.; Ahn, S.; Woo, M.; Yang, S.K. Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation. Environ. Sci. Technol. 2006, 40, 5514–5519. [Google Scholar] [CrossRef]
- Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, C.; Xie, Y.; Zeng, Y.; Zhao, F.; Wu, Y. Chromate Removal by Surface-Modified Nanoscale Zero-Valent Iron: Effect of Different Surface Coatings and Water Chemistry. J. Colloid Interface Sci. 2016, 471, 7–13. [Google Scholar] [CrossRef]
- Shi, L.; Lin, Y.-M.; Zhang, X.; Chen, Z. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2011, 171, 612–617. [Google Scholar] [CrossRef]
- Camps, I.; Maldonado-Castillo, A.; Kesarla, M.K.; Godavarthi, S.; Casales-Díaz, M.; Martínez-Gómez, L. Zerovalent nickel nanoparticles performance towards Cr(VI) adsorption in polluted water. Nanotechnology 2020, 31, 195708. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Ang, H.M.; Tadé, M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336–347. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X. Synthesis of porous Fe3O4 hollow microspheres/ graphene oxide composite for Cr(vi) removal. Dalt. Trans. 2013, 42, 14710–14717. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597–606. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Yang, F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chem. Eng. J. 2013, 229, 460–468. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Yang, F. Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane. J. Hazard. Mater. 2014, 280, 20–30. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Yang, F. Polyaniline/reduced graphene oxide/Fe3O4 nano-composite for aqueous Hg(II) removal. Water Sci. Technol. 2015, 72, 2062–2070. [Google Scholar] [CrossRef]
- Mohammadi Nodeh, M.K.; Soltani, S.; Shahabuddin, S.; Rashidi Nodeh, H.; Sereshti, H. Equilibrium, kinetic and thermodynamic study of magnetic polyaniline/graphene oxide based nanocomposites for ciprofloxacin removal from water. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1226–1234. [Google Scholar] [CrossRef]
- Gabris, M.A.; Jume, B.H.; Rezaali, M.; Shahabuddin, S.; Nodeh, H.R.; Saidur, R. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb(II) ions from aqueous media: Equilibrium and kinetic studies. Environ. Sci. Pollut. Res. 2018, 25, 27122–27132. [Google Scholar] [CrossRef] [PubMed]
- Taleshi, F.; Hosseini, A.A. Synthesis of uniform MgO/CNT nanorods by precipitation method. J. Nanostruct. Chem. 2012, 3, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Moradi, O.; Zare, K.; Monajjemi, M.; Yari, M.; Aghaie, H. The studies of equilibrium and thermodynamic adsorption of Pb(II), Cd(II) and Cu(II) ions from aqueous solution onto SWCNTs and SWCNT-COOH surfaces. Fuller. Nanotub. Carbon Nanostruct. 2010, 18, 285–302. [Google Scholar] [CrossRef]
- Tawabini, B.; Al-Khaldi, S.; Atieh, M.; Khaled, M. Removal of mercury from water by multi-walled carbon nanotubes. Water Sci. Technol. 2010, 61, 591–598. [Google Scholar] [CrossRef]
- Hadavifar, M.; Bahramifar, N.; Younesi, H.; Li, Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem. Eng. J. 2014, 237, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 1991, 139, 271–279. [Google Scholar] [CrossRef]
- Zhu, L.; Chang, D.W.; Dai, L.; Hong, Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett. 2007, 7, 3592–3597. [Google Scholar] [CrossRef]
- Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.P.; Prato, M.; Muller, S.; Bianco, A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006, 6, 1522–1528. [Google Scholar] [CrossRef]
- Vuković, G.D.; Marinković, A.D.; Čolić, M.; Ristić, M.D.; Aleksić, R.; Perić-Grujić, A.A.; Uskoković, P.S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 2010, 157, 238–248. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Melgoza, L.L.; García-Depraect, O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 2021, 270, 129421. [Google Scholar] [CrossRef]
- Raviya, M.R.; Gauswami, M.V.; Raval, H.D. A novel Polysulfone/Iron-Nickel oxide nanocomposite membrane for removal of heavy metal and protein from water. Water Environ. Res. 2020, 92, 1990–1998. [Google Scholar] [CrossRef]
- Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297. [Google Scholar] [CrossRef]
- Filice, S.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobinski, L.; Kwiatkowski, R.; Boczkowska, A.; Gradon, L.; Scalese, S. Sulfonated pentablock copolymer membranes and graphene oxide addition for efficient removal of metal ions from water. Nanomaterials 2020, 10, 1157. [Google Scholar] [CrossRef]
- Tran, T.V.; Nguyen, D.T.C.; Le, H.T.N.; Tu, T.T.K.; Le, N.D.; Lim, K.T.; Bach, L.G.; Nguyen, T.D. MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation. J. Environ. Chem. Eng. 2019, 7, 102881. [Google Scholar] [CrossRef]
- Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43–70. [Google Scholar] [CrossRef] [Green Version]
- Frimmel, F.H.; Niessner, R. Nanoparticles in the water cycle: Properties, analysis and environmental relevance. Nanopart. Water Cycle Prop. Anal. Environ. Relev. 2010, 1–239. [Google Scholar] [CrossRef]
- Boix, G.; Troyano, J.; Garzón-Tovar, L.; Camur, C.; Bermejo, N.; Yazdi, A.; Piella, J.; Bastus, N.G.; Puntes, V.F.; Imaz, I.; et al. MOF-Beads Containing Inorganic Nanoparticles for the Simultaneous Removal of Multiple Heavy Metals from Water. ACS Appl. Mater. Interfaces 2020, 12, 10554–10562. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- Preethi, P.; Balakrishna, G. Physical and Chemical Properties of Banana Fibre Extracted from Commercial Banana Cultivars Grown in Tamilnadu State. Agrotechnology 2013, 1, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Rani, K.; Gomathi, T.; Vijayalakshmi, K.; Saranya, M.; Sudha, P.N. Banana fiber Cellulose Nano Crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int. J. Biol. Macromol. 2019, 131, 461–472. [Google Scholar] [CrossRef]
- Rad, L.R.; Momeni, A.; Ghazani, B.F.; Irani, M.; Mahmoudi, M.; Noghreh, B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem. Eng. J. 2014, 256, 119–127. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, Q.; Li, F.; Zhang, B. Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem. Eng. J. 2013, 222, 321–329. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. J. Environ. Chem. Eng. 2017, 5, 4121–4127. [Google Scholar] [CrossRef]
- Islam, M.S.; Karim, M.R. Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 135–140. [Google Scholar] [CrossRef]
- Kuila, S.B.; Ray, S.K. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate. Carbohydr. Polym. 2014, 101, 1154–1165. [Google Scholar] [CrossRef]
- Shalumon, K.T.; Anulekha, K.H.; Nair, S.V.; Nair, S.V.; Chennazhi, K.P.; Jayakumar, R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol. 2011, 49, 247–254. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Sadeghizadeh, A.; Neysan, F.; Heydari, M. Fabrication of nanofibers using sodium alginate and Poly(Vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: Adsorption mechanism, kinetics and thermodynamics. Heliyon 2019, 5, e02941. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.A.; Llanes, F.; Volesky, B.; Diaz-Pulido, G.; McCook, L.; Mucci, A. 1H-NMR study of Na alginates extracted from sargassum spp. in Relation to metal biosorption. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2003, 110, 75–90. [Google Scholar] [CrossRef]
- Cataldo, S.; Muratore, N.; Orecchio, S.; Pettignano, A. Enhancement of adsorption ability of calcium alginate gel beads towards Pd(II) ion. A kinetic and equilibrium study on hybrid Laponite and Montmorillonite-alginate gel beads. Appl. Clay Sci. 2015, 118, 162–170. [Google Scholar] [CrossRef]
- Crist, R.H.; Oberholser, K.; Shank, N.; Nguyen, M. Nature of Bonding between Metallic Ions and Algal Cell Walls. Environ. Sci. Technol. 1981, 15, 1212–1217. [Google Scholar] [CrossRef]
- Esmat, M.; Farghali, A.A.; Khedr, M.H.; El-Sherbiny, I.M. Alginate-based nanocomposites for efficient removal of heavy metal ions. Int. J. Biol. Macromol. 2017, 102, 272–283. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Chan, H.T.; Chen, Q.; Chen, H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Nanomaterials 2021, 11, 1792. https://doi.org/10.3390/nano11071792
Gong Z, Chan HT, Chen Q, Chen H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Nanomaterials. 2021; 11(7):1792. https://doi.org/10.3390/nano11071792
Chicago/Turabian StyleGong, Zhaoyuan, Hiu Ting Chan, Qilei Chen, and Hubiao Chen. 2021. "Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources" Nanomaterials 11, no. 7: 1792. https://doi.org/10.3390/nano11071792
APA StyleGong, Z., Chan, H. T., Chen, Q., & Chen, H. (2021). Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Nanomaterials, 11(7), 1792. https://doi.org/10.3390/nano11071792