Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods for On-Axis and Off-Axis PLD of Functional Nanolayers for MoSx~4/WSe2/C(В) Heterostructure Formation
2.2. Structural, Chemical, Electrical, Optical, and Photoelectrochemical Characterization Techniques
3. Results
3.1. On-Axis PLD of C(B) Films
3.2. Off-Axis PLD of WSe2 Films
3.3. On-Axis Reactive PLD of MoSx~4 Film
3.4. Photoelectrocatalytic Properties of the MoSx~4/WSe2/C(B)/Al2O3 Cathode
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Shifa, T.A.; Zhan, X.; Huang, Y.; Liu, K.; Cheng, Z.; Jiang, C.; He, J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015, 7, 19764–19788. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Zhang, J.; Zhu, X.; Zhang, Q.; Zhang, Y.; Ren, Z.; Song, S.; Wang, J.; Ying, Z.; et al. Highly Efficient Photocatalytic Hydrogen Evolution by ReS2 via a Two-Electron Catalytic Reaction. Adv. Mater. 2018, 30, 1707123. [Google Scholar] [CrossRef]
- Andoshe, D.; Jeon, J.; Kim, S.; Jang, H. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting. Electron. Mater. Lett. 2015, 11, 3. [Google Scholar] [CrossRef]
- Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.; Strano, M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946. [Google Scholar] [CrossRef]
- Laursen, A.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 557. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, T.; Gong, J. Single-crystal silicon-based electrodes for unbiased solar water splitting: Current status and prospects. Chem. Soc. Rev. 2018, 48, 2158–2181. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Yang, G.; Kai Zhang, K.; Tang, D.; Su, Y.; Li, Y.; Luo, S.; Chang, K.; Ye, J. In Situ Assembly of MoSx Thin-Film through Self-Reduction on p-Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution. Adv. Funct. Mater. 2020, 2007071. [Google Scholar] [CrossRef]
- McKone, J.; Adam, P.; Pieterick, A.; Gray, H.; Nathan, S.; Lewis, N. Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes. J. Am. Chem. Soc. 2013, 135, 223–231. [Google Scholar] [CrossRef]
- Li, C.; Cao, Q.; Wang, F.; Xiao, Y.; Li, Y.; Delaunay, J.-J.; Zhu, H. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981. [Google Scholar] [CrossRef]
- Zhong, S.; Xi, Y.; Wu, S.; Liu, Q.; Zhao, L.; Bai, S. Hybrid cocatalysts in semiconductor based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 2020, 8, 14863–14894. [Google Scholar] [CrossRef]
- Bozheyev, F.; Xi, F.; Plate, P.; Dittrich, T.; Fiechter, S.; Ellmer, K. Efficient charge transfer at a homogeneously distributed (NH4)2Mo3S13/WSe2 heterojunction for solar hydrogen evolution. J. Mater. Chem. A 2019, 7, 10769–10780. [Google Scholar] [CrossRef]
- Bozheyev, F.; Xi, F.; Ahmet, I.; Hohn, C.; Ellmer, K. Evaluation of Pt, Rh, SnO2, (NH4)2Mo3S13, BaSO4 protection coatings on WSe2 photocathodes for solar hydrogen evolution. Int. J. Hydrog. Energy 2020, 45, 19112–19120. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Thye, A.; Wee, S. Role of Metal Contacts in High Performance Phototransistors Based on WSe2 Monolayers. Am. Chem. Soc. 2014, 8, 8653–8661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, S.; Umar, A.; Mehta, S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci. 2016, 83, 270–329. [Google Scholar] [CrossRef]
- Li, H.; Zou, J.; Xie, S.; Leng, X.; Gao, D.; Yang, H.; Mao, X. WSe2 nanofilms grown on graphite as efficient electrodes for hydrogen evolution reactions. J. Alloys Compd. 2017, 725, 884–890. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Romanov, R.I.; Volosova, M.A.; Grunin, A.I.; Teterina, G.D. The Formation of a Hybrid Structure from Tungsten Selenide and Oxide Plates for a Hydrogen-Evolution Electrocatalyst. Tech. Phys. Lett. 2016, 42, 553–556. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, T.; Yao, J.; Zhang, Y.; Xu, J.; Yang, G. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Fominski, V.Y.; Nevolin, V.N.; Romanov, R.I.; Volosova, M.A.; Irzhak, A.V. Formation of Thin Catalytic WSex Layer on Graphite Electrodes for Activation of Hydrogen Evolution Reaction in Aqueous Acid. Inorg. Mater. Appl. Res. 2016, 7, 2–285. [Google Scholar] [CrossRef]
- Seo, S.; Choi, H.; Kim, S.-Y.; Lee, J.; Kim, K.; Yoon, S.; Lee, B.; Lee, S. Growth of Centimeter-Scale Monolayer and Few-Layer WSe2 Thin Films on SiO2/Si Substrate via Pulsed Laser Deposition. Adv. Mater. Interfaces 2018, 5, 1800524. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Fominski, V.Y.; Romanov, R.I.; Gnedovets, A.G.; Volosova, M.A. Shadow masked pulsed laser deposition of WSex films: Experiment and modeling. Appl. Surf. Sci. 2013, 282, 607–614. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Gnedovets, A.G.; Romanov, R.I.; Volosova, M.A. Experimental study and modelling of laser plasma ion implantation for WSex/57Fe interface modification. Appl. Surf. Sci. 2013, 276, 242–248. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Romanov, R.I.; Volosova, M.A.; Demin, M.V. Chemical composition, structure and light reflectance of W-Se and W-Se-C films prepared by pulsed laser deposition in rare and reactive buffer gases. Vacuum 2015, 119, 19–29. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Gnedovets, A.G.; Romanov, R.I. On the Mechanism of Encapsulated Particle Formation during Pulsed Laser Deposition of WSex Thin-Film Coatings. Tech. Phys. Let. 2013, 39, 312–315. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Markeev, A.M.; Nevolin, V.N.; Prokopenko, V.B.; Vrublevski, A.R. Pulsed laser deposition of MoSx films in a buffer gas atmosphere. Thin Solid Films 1994, 248, 240–246. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Nevolin, V.N.; Romanov, R.I.; Smurov, I. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field. J. Appl. Phys. 2001, 89, 1449–1457. [Google Scholar] [CrossRef]
- Fominski, V.; Demin, M.; Fominski, D.; Romanov, R.; Goikhman, A.; Maksimova, K. Comparative study of the structure, composition, and electrocatalytic performance of hydrogen evolution in MoSx~2+δ/Mo and MoSx~3+δ films obtained by pulsed laser deposition. Nanomaterials 2020, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Jiang, L.; Li, X.; Cheng, Z.; Ran, P.; Zuo, P.; Qu, L.; Zhang, J.; Lu, Y. Controllable Synthesis of Nanosized Amorphous MoSx Using Temporally Shaped Femtosecond Laser for Highly Efficient Electrochemical Hydrogen Production. Adv. Funct. Mater. 2019, 29, 1806229. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, Y.; Huang, Y.; Nielsen, R.; William, A.; Goddard, W.A., III; Li, Y.; Cao, L. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution. ACS Catal. 2015, 5, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Wang, M.; Wang, X.; Wang, H.; Wang, L.; Mu, Y.; Lv, B. N-Doped amorphous MoSx for the hydrogen evolution reaction. Nanoscale 2019, 11, 11217–11226. [Google Scholar] [CrossRef]
- Giuffredi, G.; Mezzetti, A.; Perego, A.; Mazzolini, P.; Prato, M.; Fumagalli, F.; Lin, Y.-C.; Liu, C.; Ivanov, I.; Belianinov, A.; et al. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. Small 2020, 2004047. [Google Scholar] [CrossRef]
- Wang, R.; Sun, P.; Wang, H.; Wang, X. Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochim. Acta 2017, 258, 876–882. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Shelyakov, A.V. Regulated growth of quasi-amorphous MoSx thin-film hydrogen evolution catalysts by pulsed laser deposition of Mo in reactive H2S gas. Thin Solid Films 2017, 642, 58–68. [Google Scholar] [CrossRef]
- Fominski, V.; Romanov, R.; Fominski, D.; Soloviev, A.; Rubinkovskaya, O.; Demin, M.; Maksimova, K.; Shvets, P.; Goikhman, A. Performance and Mechanism of Photoelectrocatalytic Activity of MoSx/WO3 Heterostructures Obtained by Reactive Pulsed Laser Deposition for Water Splitting. Nanomaterials 2020, 10, 871. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Bastiani, M.; Allen, T.; Kang, J.; Xu, H.; Aydin, E.; Xu, L.; Bi, Q.; Dang, H. Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts for Efficient Silicon Solar Cells. Joule 2019, 3, 1314–1327. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Vasil’evskii, I.S.; Safonov, D.A.; Soloviev, A.A.; Zinin, P.V.; Bulatov, K.M.; Filonenko, V.P. Structural, electrical and mechanical properties of ВСх films prepared by pulsed laser deposition from mixed and dual boron-diamond/graphite targets. Diam. Relat. Mater. 2019, 92, 266–277. [Google Scholar] [CrossRef]
- Fominski, V.; Demin, M.; Nevolin, V.; Fominski, D.; Romanov, R.; Gritskevich, M.; Smirnov, N. Reactive Pulsed Laser Deposition of Clustered-Type MoSx (x~2, 3, and 4) Films and Their Solid Lubricant Properties at Low Temperature. Nanomaterials 2020, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Chiu, M.; Zhang, C.; Shiu, H.; Chuu, C.; Chen, C.; Chang, C.S.; Chen, C.; Chou, M.; Shih, C.; Li, L. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Xing, S.; Zhao, G.; Wang, J.; Xu, Y.; Ma, Z.; Li, X.; Yang, W.; Liu, G.; Yang, J. Band alignment of wo-dimensional h-BN/MoS2 van der Waals heterojunction measured by X-ray photoelectron spectroscopy. J. Alloys Compd. 2020, 834, 155108. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Vasil’evskii, I.S.; Safonov, D.A.; Soloviev, A.A.; Ivanov, A.A.; Zinin, P.V.; Krasnoborodko, S.Y.; Vysokikh, Y.E.; Filonenko, V.P. Pulsed laser modification of layered B-C and mixed BCx films on sapphire substrate. Diam. Relat. Mater. 2021, 114, 108336. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, Y.; Zhang, J.; Toh, M.; Kloc, C.; Xiong, Q.; Quek, S.Y. Effect of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B 2013, 88, 195313. [Google Scholar] [CrossRef]
- Yu, X.; Prévot, M.S.; Guijarro, N.; Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscher, N.D.; Carmalt, C.J.; Parkin, I.P. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces. J. Mater. Chem. 2006, 16, 122–127. [Google Scholar] [CrossRef]
- Lee, C.; Lee, G.; Van der Zande, A.M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F.; et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Doan, M.; Jin, Y.; Adhikari, S.; Lee, S.; Zhao, J.; Lim, S.C.; Lee, Y.H. Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer. ACS Nano 2017, 11, 3832–3840. [Google Scholar] [CrossRef]
- Xi, F.; Bogdanoff, P.; Harbauer, K.; Plate, P.; Höhn, C.; Rappich, J.; Wang, B.; Han, X.; Van de Krol, R.; Fiechter, S. Structural transformation identification of sputtered amorphous MoSx as efficient hydrogen evolving catalyst during electrochemical activation. ACS Catal. 2019, 9, 2368–2380. [Google Scholar] [CrossRef]
- Bozheyev, F.; Rengacharid, М.; Berglunde, S.; Abou-Rase, D.; Ellmere, K. Passivation of recombination active PdSex centers in (001)-textured photoactive WSe2 films. Mat. Sci. Semicon. Proc. 2019, 93, 284–289. [Google Scholar] [CrossRef]
- Barbosa, J.B.; Taberna, P.L.; Bourdon, V.; Gerber, I.C.; Poteau, R.; Balocchi, A.; Marie, X.; Esvan, J.; Puech, P.; Barnabé, A.; et al. Mo thio and oxo-thio molecular complexes film as self-healing catalyst for photocatalytic hydrogen evolution on 2D materials. Appl. Catal. B 2020, 278, 119288. [Google Scholar] [CrossRef]
- Taberna, P.L.; Barbosa, J.B.; Balocchi, A.; Gerber, K.U.; Barnabe, A.; Marie, X.; Chane-Ching, J.Y. Patch-like, Two Dimensional WSe2-Based Hetero-structures Activated by a Healing Catalyst for H2 Photocatalytic Generation. Chem. Eng. J. 2021, 130433. [Google Scholar] [CrossRef]
- Kannichankandy, D.; Pataniya, P.M.; Sumesh, C.K.; Solanki, G.K.; Pathak, V.M. WSe2-PANI nanohybrid structure as efficient electrocatalyst for photo-enhanced hydrogen evolution reaction. J. Alloys Compd. 2021, 876, 160179. [Google Scholar] [CrossRef]
- Yu, X.; Guijarro, N.; Johnson, M.; Sivula, K. Defect mitigation of Solution-Processed 2D WSe2 Nano-flakes for Solar-to Hydrogen Conversion. Nano Lett. 2018, 18, 215–222. [Google Scholar] [CrossRef]
- Si, K.; Ma, J.; Lu, C.; Zhou, Y.; He, C.; DanYang, D.; Wang, X.; Xu, X. A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance. Appl. Surf. Sci. 2020, 507, 145082. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, G.; Xu, X.; Liu, L.; Zhang, J.; Xu, Q. Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Appl. Surf. Sci. 2019, 496, 143694. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Dzhumaev, P.S.; Troyan, I.A. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target. Opt. Laser Technol. 2018, 102, 74–84. [Google Scholar] [CrossRef]
- Nevolin, V.N.; Fominski, D.V.; Romanov, R.I.; Esin, M.I.; Fominski, V.Y.; Kartsev, P.F. Selection of pulsed laser deposition conditions for preparation of perfect thin-film MoSx hydrogen evolution catalysts. J. Phys. Conf. Ser. 2019, 1, 1238. [Google Scholar] [CrossRef] [Green Version]
Hetero- Structures | Rear Contact/ Support | Preparation Methods | Uonset, mV (RHE) | Photocurrent at U = 0, mA/cm2 | Light Intensity, mW/cm2 | Ref. |
---|---|---|---|---|---|---|
WSe2(Pt) | TiN:O/ SiO2/Si | aSLcS process *1 | ~500 | ≤1 | 100 | [48] |
(NH4)2Mo3S13/WSe2 | TiN:O/ quarts glass | Spin coating/ aSLcS | ~250 | 5.6 | 100 | [13] |
MoSxOy /2D-WSe2 | F:SnO2/ glass | SDCI *2/ drop casting | ~300 | 2.0 | 100 | [49] |
MoxSy/WSe2 | rGO/F:SnO2/ glass | Drop casting/ successive dip coating | ~0.2 | ~3–4 | 100 | [50] |
WSe2-PANI (Polyaniline) nanohybrid | Vapor transport technique | 280 | ~20 | 30 | [51] | |
WSe2(Pt-Cu) | F:SnO2/glass | Exfoliation/ spin-coating | ~350 | ~4 | 100 | [52] |
Pt/(NH4)2oS4/WSe2 | TiN:O/glass | aSLcS/spin coating | ~200 | ~5 | 100 | [14] |
MoS2/WSe2 | F:SnO2/glass | mechanical exfoliation/chemical vapor deposition | 800 (SCE) | 0.4 | 100 | [53] |
p-WSe2/FePt | Metallic tungsten substrate | Chemical vapor transport | 200 | 4 | 100 | [54] |
MoS4/WSe2 | C(B)/Al2O3 | RPLD/PLD | 400 | 3 | 100 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanov, R.; Fominski, V.; Demin, M.; Fominski, D.; Rubinkovskaya, O.; Novikov, S.; Volkov, V.; Doroshina, N. Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. Nanomaterials 2021, 11, 1461. https://doi.org/10.3390/nano11061461
Romanov R, Fominski V, Demin M, Fominski D, Rubinkovskaya O, Novikov S, Volkov V, Doroshina N. Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. Nanomaterials. 2021; 11(6):1461. https://doi.org/10.3390/nano11061461
Chicago/Turabian StyleRomanov, Roman, Vyacheslav Fominski, Maxim Demin, Dmitry Fominski, Oxana Rubinkovskaya, Sergey Novikov, Valentin Volkov, and Natalia Doroshina. 2021. "Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution" Nanomaterials 11, no. 6: 1461. https://doi.org/10.3390/nano11061461
APA StyleRomanov, R., Fominski, V., Demin, M., Fominski, D., Rubinkovskaya, O., Novikov, S., Volkov, V., & Doroshina, N. (2021). Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. Nanomaterials, 11(6), 1461. https://doi.org/10.3390/nano11061461