Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene
Abstract
:1. Introduction
2. Theoretical Formalism
2.1. Model
2.2. Transfer Matrix Method
3. Results and Discussions
3.1. The Oblique Klein Tunneling in Smooth NP Junctions
3.2. The Asymmetric Klein Tunneling in the Smooth NPN Junctions
3.3. The Electrical Resistance of the Smooth NPN Junctions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Liu, G.-U.; Feng, W.-A.; Xu, X.-I.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.-I.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Zhang, K.-E.; Zhang, T.-I.; Cheng, G.-U.; Li, T.-I.; Wang, S.; Wei, W.; Zhou, X.-I.; Yu, W.-E.; Sun, Y.; Wang, P.; et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures. ACS Nano 2016, 10, 3852–3858. [Google Scholar] [CrossRef]
- Du, Y.-L.; Ouyang, C.-Y.; Shi, S.-Q.; Lei, M.-S. Electronic Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718. [Google Scholar] [CrossRef]
- Li, L.-K.; Kim, J.; Jin, C.-H.; Ye, G.-J.; Qiu, D.Y.; Felipe, H.; Shi, Z.-W.; Chen, L.; Zhang, Z.-C.; Yang, F.-Y.; et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.-K.; Yang, F.-Y.; Ye, G.-J.; Zhang, Z.-C.; Zhu, Z.-W.; Lou, W.-K.; Zhou, X.-Y.; Li, L.; Watanabe, K.; Taniguchi, T.; et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597. [Google Scholar]
- Zhou, X.-Y.; Lou, W.-K.; Zhai, F.; Chang, K. Anomalous magneto-optical response of black phosphorus thin films. Phys. Rev. B 2015, 92, 165405. [Google Scholar] [CrossRef]
- Tamalampudi, S.R.; Lu, Y.-Y.; Sankar, R.K.U.R.; Liao, C.-D.; Cheng, K.M.B.C.; Chou, F.-C.; Chen, Y.-T. High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response. Nano Lett. 2014, 14, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodríguez-Cantó, P.J.; Segura, A.; Cros, A.; Tobias, G.; Canadell, E.; et al. Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Lett. 2016, 16, 3221–3229. [Google Scholar] [CrossRef]
- Bandurin, D.A.; Tyurnina, A.V.; Yu, G.L.; Mishchenko, A.; Zólyomi, V.; Morozov, S.V.; Kumar, R.K.; Gorbachev, R.V.; Kudrynskyi, Z.R.; Pezzini, S.; et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, B.-H.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P.-Z.; Duan, W.-H.; Zhang, S.-C. Large-Gap Quantum Spin Hall Insulators in Tin Films. Phys. Rev. Lett. 2013, 111, 136804. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-F.; Chen, W.-J.; Xu, Y.; Gao, C.-L.; Guan, D.-D.; Liu, C.-H.; Qian, D.; Zhang, S.-C.; Jia, J.-F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D materials and van der Waals heterostructures. Science 2016, 353, 9493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaibley, J.R.; Yu, H.-Y.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X.-D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 1–15. [Google Scholar] [CrossRef]
- Beenakker, C.W.J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 2008, 80, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-H.; Peeters, F.M.; Chang, K. Electron tunneling through double magnetic barriers on the surface of a topological insulator. Phys. Rev. B 2010, 82, 115211. [Google Scholar] [CrossRef]
- Bai, C.-X.; Zhang, X.-X. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B 2007, 76, 075430. [Google Scholar] [CrossRef]
- Pereira, J.M., Jr.; Peeters, F.M.; Chaves, A.; Farias, G.A. Klein tunneling in single and multiple barriers in graphene. Semicond. Sci. Technol. 2010, 25, 033002. [Google Scholar] [CrossRef]
- Oh, H.; Coh, S.; Son, Y.-W.; Cohen, M.L. Inhibiting Klein Tunneling in a Graphene p-n Junction without an External Magnetic Field. Phys. Rev. Lett. 2016, 117, 016804. [Google Scholar] [CrossRef] [Green Version]
- Cheianov, V.V.; Fal’ko, V.I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 2006, 74, 041403. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-F.; Dong, X.; Oganov, A.R.; Zhu, Q.; Tian, Y.-J.; Wang, H.-T. Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions. Phys. Rev. Lett. 2014, 112, 085502. [Google Scholar] [CrossRef] [Green Version]
- Mannix, A.J.; Zhou, X.-F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.-L.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.-L.; Ma, F.-X.; Bell, J.; Bilic, A.; Du, A.-J. Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. Angew. Chem. 2016, 128, 10448–10451. [Google Scholar] [CrossRef]
- Kunstmann, J.; Quandt, A.r. Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 2006, 74, 035413. [Google Scholar] [CrossRef] [Green Version]
- Dressellhaus, M.S.; Dresselhaus, G.; Jorio, A. Group Theory: Application to the Physics of Condensed Matter; Springer: Berlin/Heidelberg, Germany, 2008; pp. 190–191. [Google Scholar]
- Feng, B.-J.; Sugino, O.; Liu, R.-Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.-W.; Hasegawa, Y.; Li, H.; et al. Dirac Fermions in Borophene. Phys. Rev. Lett. 2017, 118, 096401. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Bezanilla, A.; Littlewood, P.B. Electronic properties of 8-Pmmn borophene. Phys. Rev. B 2016, 93, 241405. [Google Scholar] [CrossRef] [Green Version]
- Zabolotskiy, A.D.; Lozovik, Y.E. Strain-induced pseudomagnetic field in the Dirac semimetal borophene. Phys. Rev. B 2016, 94, 165403. [Google Scholar] [CrossRef] [Green Version]
- Sadhukhan, K.; Agarwal, A. Anisotropic plasmons, Friedel oscillations, and screening in 8-Pmmn borophene. Phys. Rev. B 2017, 96, 035410. [Google Scholar] [CrossRef] [Green Version]
- Jalali-Mola, Z.; Jafari, S.A. Tilt-induced kink in the plasmon dispersion of two-dimensional Dirac electrons. Phys. Rev. B 2018, 98, 195415. [Google Scholar] [CrossRef] [Green Version]
- Jalali-Mola, Z.; Jafari, S.A. Kinked plasmon dispersion in borophene-borophene and borophene-graphene double layers. Phys. Rev. B 2018, 98, 235430. [Google Scholar] [CrossRef] [Green Version]
- Lian, C.; Hu, S.-Q.; Zhang, J.; Cheng, C.; Yuan, Z.; Gao, S.-W.; Meng, S. Integrated Plasmonics: Broadband Dirac Plasmons in Borophene. Phys. Rev. Lett. 2020, 125, 116802. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mawrie, A.; Ghosh, T.K. Effect of electron-hole asymmetry on optical conductivity in 8-Pmmn borophene. Phys. Rev. B 2017, 96, 155418. [Google Scholar] [CrossRef] [Green Version]
- Mojarro, M.A.; Carrillo-Bastos, R.; Maytorena, J.A. Optical properties of massive anisotropic tilted Dirac systems. Phys. Rev. B 2021, 103, 165415. [Google Scholar] [CrossRef]
- Islam, S.K.F.; Jayannavar, A.M. Signature of tilted Dirac cones in Weiss oscillations of 8-Pmmn borophene. Phys. Rev. B 2017, 96, 235405. [Google Scholar] [CrossRef] [Green Version]
- Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. Tight-binding model for borophene and borophane. Phys. Rev. B 2018, 97, 125424. [Google Scholar] [CrossRef]
- Singh, A.; Ghosh, S.; Agarwal, A. Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials. Phys. Rev. B 2018, 97, 205420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Yang, W. Oblique Klein tunneling in 8-Pmmn borophene p—n junctions. Phys. Rev. B 2018, 97, 235440. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-F. Valley-dependent electron retroreflection and anomalous Klein tunneling in an 8-pmm borophene-based n—p—n junction. Phys. Rev. B 2019, 100, 195139. [Google Scholar] [CrossRef]
- Zhou, X.-F. Valley splitting and anomalous Klein tunneling in borophane-based n—p and n—p—n junctions. Phys. Lett. A 2020, 384, 126612. [Google Scholar] [CrossRef]
- Zhong, H.-X.; Huang, K.-X.; Yu, G.-D.; Yuan, S.-J. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 2018, 98, 054104. [Google Scholar] [CrossRef] [Green Version]
- Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. Dirac nodal line in bilayer borophene: Tight-binding model and low-energy effective Hamiltonian. Phys. Rev. B 2018, 98, 115413. [Google Scholar] [CrossRef] [Green Version]
- Champo, A.E.; Naumis, G.G. Metal-insulator transition in 8-Pmmn borophene under normal incidence of electromagnetic radiation. Phys. Rev. B 2019, 99, 035415. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Kunold, A.; Naumis, G.G. Dynamical band gap tuning in anisotropic tilted Dirac semimetals by intense elliptically polarized normal illumination and its application to 8-Pmmn borophene. Phys. Rev. B 2019, 100, 125302. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.C.; Islam, S.K.F.; Saha, A. Fingerprints of tilted Dirac cones on the RKKY exchange interaction in 8-Pmmn borophene. Phys. Rev. B 2019, 99, 155418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Shao, D.-I.; Yang, W. Velocity-determined anisotropic behaviors of RKKY interaction in 8-Pmmn borophene. J. Magn. Magn. Mater. 2019, 491, 165631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Yang, W. Anomalous caustics and Veselago focusing in 8-Pmmn borophene p–n junctions with arbitrary junction directions. New J. Phys. 2019, 21, 103052. [Google Scholar] [CrossRef]
- Gao, M.; Yan, X.-U.; Wang, J.; Lu, Z.-H.; Xiang, T. Electron-phonon coupling in a honeycomb borophene grown on Al (111) surface. Phys. Rev. B 2019, 100, 024503. [Google Scholar] [CrossRef] [Green Version]
- Kapri, P.; Dey, B.; Ghosh, T.K. Valley caloritronics in a photodriven heterojunction of Dirac materials. Phys. Rev. B 2020, 102, 045417. [Google Scholar] [CrossRef]
- Zheng, J.-I.; Lu, J.-U.; Zhai, F. Anisotropic and gate-tunable valley filtering based on 8-Pmmn borophene. Phys. Rev. B 2020, 32, 025205. [Google Scholar]
- Zhou, X.-I. Anomalous Andreev reflection in an 8-pmmn borophene-based superconducting junction. Phys. Rev. B 2020, 102, 045132. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Charlier, J.C. Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion Superlattices. Phys. Rev. B 2018, 97, 235113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Zhu, J.-I.; Yang, W.; Lin, H.-A.; Chang, K. Hidden quantum mirage by negative refraction in semiconductor P-N junctions. Phys. Rev. B 2016, 94, 085408. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Yang, W.; Peeters, F.M. Veselago focusing of anisotropic massless Dirac fermions. Phys. Rev. B 2018, 97, 205437. [Google Scholar] [CrossRef] [Green Version]
- Hahn, T. International Tables for Crystallography, Volume A; Springer: Berlin/Heidelberg, Germany, 2005; p. 59. [Google Scholar]
- Napitu, B.D. Photoinduced Hall effect and transport properties of irradiated 8-Pmmn borophene monolayer. J. Appl. Phys. 2020, 128, 039901. [Google Scholar] [CrossRef]
- Li, H.-A.; Wang, L.; Lan, Z.-H.; Zheng, Y.-I. Generalized transfer matrix theory of electronic transport through a graphene waveguide. Phys. Rev. B 2009, 79, 155429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.B.; Chang, K.; Xie, X.-I.; Buhmann, H.; Molenkamp, L.W. Quantum tunneling through planar p–n junctions in HgTe quantum wells. New J. Phys. 2010, 12, 083058. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.-I.; Shi, X.; Dai, Y.Y.; Liu, X.H.; Zi, J. Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter. 2013, 25, 215301. [Google Scholar] [CrossRef]
- Li, Z.-H.; Cao, T.; Wu, M.; Louie, S.G. Generation of Anisotropic Massless Dirac Fermions and Asymmetric Klein Tunneling in Few-Layer Black Phosphorus Superlattices. Nano Lett. 2017, 17, 2280–2286. [Google Scholar] [CrossRef] [Green Version]
- Huard, B.; Sulpizio, J.A.; Stander, N.; Todd, K.; Yang, B.; Goldhaber-Gordon, D. Transport Measurements Across a Tunable Potential Barrier in Graphene. Phys. Rev. Lett. 2007, 98, 236803. [Google Scholar] [CrossRef] [Green Version]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1999; pp. 48–110. [Google Scholar]
- Allain, P.E.; Fuchs, J.N. Klein tunneling in graphene: Optics with massless electrons. Eur. Phys. J. B 2011, 83, 301–317. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Z.; Li, J.; Zhang, Y.; Zhang, S.-H.; Zhu, J.-J. Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene. Nanomaterials 2021, 11, 1462. https://doi.org/10.3390/nano11061462
Kong Z, Li J, Zhang Y, Zhang S-H, Zhu J-J. Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene. Nanomaterials. 2021; 11(6):1462. https://doi.org/10.3390/nano11061462
Chicago/Turabian StyleKong, Zhan, Jian Li, Yi Zhang, Shu-Hui Zhang, and Jia-Ji Zhu. 2021. "Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene" Nanomaterials 11, no. 6: 1462. https://doi.org/10.3390/nano11061462
APA StyleKong, Z., Li, J., Zhang, Y., Zhang, S. -H., & Zhu, J. -J. (2021). Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene. Nanomaterials, 11(6), 1462. https://doi.org/10.3390/nano11061462