High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range
Abstract
:1. Introduction
2. Structural and Theoretical Analysis
2.1. Modeling Design
2.2. The Physical Mechanism
3. Results and Discussion
3.1. Far Field and Near Field
3.2. Structural Parameter Analysis
3.3. Influence of Dielectric Environment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muehlschlegel, P.; Eisler, H.-J.; Martin, O.J.; Hecht, B.; Pohl, D. Resonant optical antennas. Science 2005, 308, 1607–1609. [Google Scholar] [CrossRef] [Green Version]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Surface-Enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 2002, 14, R597. [Google Scholar] [CrossRef] [Green Version]
- Laurent, G.; Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J.R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F.R. Evidence of multipolar excitations in surface enhanced Raman scattering. Phys. Rev. B 2005, 71, 045430. [Google Scholar] [CrossRef]
- Khunsin, W.; Dorfmüller, J.; Esslinger, M.; Vogelgesang, R.; Rockstuhl, C.; Etrich, C.; Kern, K. Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode. ACS Nano 2016, 10, 2214–2224. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-Dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, W.; Yuan, X.; Qin, S. Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials. J. Opt. 2014, 16, 125102. [Google Scholar] [CrossRef]
- Mun, S.E.; Yun, H.; Choi, C.; Kim, S.J.; Lee, B. Enhancement and switching of Fano resonance in metamaterial. Adv. Opt. Mater. 2018, 6, 1800545. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, G.; Lu, Y.; Li, G. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Express 2019, 27, 25384–25394. [Google Scholar] [CrossRef]
- Bogdanov, A.A.; Koshelev, K.L.; Kapitanova, P.V.; Rybin, M.V.; Gladyshev, S.A.; Sadrieva, Z.F.; Samusev, K.B.; Kivshar, Y.S.; Limonov, M.F. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photonics 2019, 1, 016001. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Cong, L.; Srivastava, Y.K.; Qiang, B.; Rybin, M.V.; Kumar, A.; Jain, R.; Lim, W.X.; Achanta, V.G.; Prabhu, S.S. All-Dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater. 2019, 31, 1901921. [Google Scholar] [CrossRef]
- Liu, G.-D.; Zhai, X.; Xia, S.-X.; Lin, Q.; Zhao, C.-J.; Wang, L.-L. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface. Opt. Express 2017, 25, 26045–26054. [Google Scholar] [CrossRef]
- Deriy, I.; Toftul, I.; Petrov, M.; Bogdanov, A. Bound states in the continuum in compact acoustic resonators. arXiv 2021, arXiv:2104.05539. [Google Scholar]
- Liu, S.D.; Yue, P.; Zhang, S.; Wang, M.; Dai, H.; Chen, Y.; Nie, Z.Q.; Cui, Y.; Han, J.B.; Duan, H. Metasurfaces composed of plasmonic molecules: Hybridization between parallel and orthogonal surface lattice resonances. Adv. Opt. Mater. 2020, 8, 1901109. [Google Scholar] [CrossRef]
- Gupta, M.; Savinov, V.; Xu, N.; Cong, L.; Dayal, G.; Wang, S.; Zhang, W.; Zheludev, N.I.; Singh, R. Sharp toroidal resonances in planar terahertz metasurfaces. Adv. Mater. 2016, 28, 8206–8211. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Dong, S.; Zhou, L.M.; Zhang, Q.; Deng, Y.; Wang, C.; Zhang, H.; Chen, Y.; Qiu, C.W.; Liu, X. Fano resonance in artificial photonic molecules. Adv. Opt. Mater. 2020, 8, 1902153. [Google Scholar] [CrossRef]
- Wang, B.; Yu, P.; Wang, W.; Zhang, X.; Kuo, H.C.; Xu, H.; Wang, Z.M. High-Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater. 2021, 9, 2001520. [Google Scholar] [CrossRef]
- Tan, T.C.; Plum, E.; Singh, R. Lattice-Enhanced Fano resonances from bound states in the continuum metasurfaces. Adv. Opt. Mater. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, L.; Xiong, L.; Qi, J.; Li, B. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials. OSA Contin. 2019, 2, 2818–2825. [Google Scholar] [CrossRef]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.-M.; Huttunen, M.J.; Boyd, R.W. Ultra-High-Q resonances in plasmonic metasurfaces. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Rybin, M.V.; Samusev, K.B.; Sinev, I.S.; Semouchkin, G.; Semouchkina, E.; Kivshar, Y.S.; Limonov, M.F. Mie scattering as a cascade of Fano resonances. Opt. Express 2013, 21, 30107–30113. [Google Scholar] [CrossRef]
- Markoš, P. Fano resonances and band structure of two-dimensional photonic structures. Phys. Rev. A 2015, 92, 043814. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Ouyang, Z.; Liu, Q.; Tang, X.; Deng, Z.-L.; Khan, A.D. Sensitive label-free sensor with high figure of merit based on plasmonic metasurface with unit cell of double two-split nanorings. J. Mater. Sci. 2019, 54, 6301–6309. [Google Scholar] [CrossRef]
- Lee, K.-L.; Huang, J.-B.; Chang, J.-W.; Wu, S.-H.; Wei, P.-K. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Zhang, Z.; Liang, L.; Yang, M.; Wei, D.; Song, X.; Zhang, H.; Lu, Y.; Liu, L.; Zhang, M. A multiple mode integrated biosensor based on higher order Fano metamaterials. Nanoscale 2020, 12, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Li, X.; Zhong, N.; Tan, X.; Zhang, X.; Liu, H.; Meng, H.; Liang, R. Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 2017, 12, 641–647. [Google Scholar] [CrossRef]
- Sun, T.; Kan, S.; Marriott, G.; Chang-Hasnain, C. High-Contrast grating resonators for label-free detection of disease biomarkers. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.-K.; Wang, X. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-L.; Hsu, H.-Y.; You, M.-L.; Chang, C.-C.; Pan, M.-Y.; Shi, X.; Ueno, K.; Misawa, H.; Wei, P.-K. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Guo, M.; Yang, H.; Ma, J.; Chen, S. Ultra-Narrow-Band filter based on high Q factor in metallic nanoslit arrays. Sensors 2020, 20, 5205. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, Z.; Wang, R.; Hai, Z.; Xue, C.; Zhang, W.; Yan, S. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 2017, 17, 784. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yang, H.; Xue, S.; Guo, L.; Zeng, L.; Xiao, G. Observation of double Fano interference in metal-insulator block arrays. IEEE Photonics J. 2020, 13, 1–9. [Google Scholar]
- Chen, J.; Yuan, J.; Zhang, Q.; Ge, H.; Tang, C.; Liu, Y.; Guo, B. Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt. Mater. Express 2018, 8, 342–347. [Google Scholar] [CrossRef]
- He, Z.; Xue, W.; Cui, W.; Li, C.; Li, Z.; Pu, L.; Feng, J.; Xiao, X.; Wang, X. Tunable Fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface. Nanomaterials 2020, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.H.; Kholmanov, I.; Alici, K.B.; Purtseladze, D.; Arju, N.; Tatar, K.; Fozdar, D.Y.; Suk, J.W.; Hao, Y.; Khanikaev, A.B. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 2013, 13, 1111–1117. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, Y.; Yang, H.; Ou, Z.; Chen, J.; Li, H.; Liu, X.; Zeng, L.; Li, J. High sensitivity plasmonic sensor based on Fano resonance with inverted U-shaped resonator. Sensors 2021, 21, 1164. [Google Scholar] [CrossRef]
- Li, W.; Lin, Q.; Zhai, X.; Wang, L. Numerical analysis of high-Q multiple Fano resonances. J. Opt. Soc. Am. B 2018, 35, 2699–2704. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, L.; Yuan, C.; Yao, J. Reconfigurable hybrid metamaterial waveguide system at terahertz regime. Opt. Express 2016, 24, 18244–18251. [Google Scholar] [CrossRef]
- Zhang, J.; MacDonald, K.F.; Zheludev, N.I. Near-Infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 2013, 21, 26721–26728. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fan, W.; Zhang, T.; Tang, C.; Chen, X.; Wu, J.; Li, D.; Yu, Y. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt. Express 2017, 25, 3675–3681. [Google Scholar] [CrossRef]
- Dmitriev, A.; Hägglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Käll, M.; Sutherland, D.S. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008, 8, 3893–3898. [Google Scholar] [CrossRef]
- Edward, D.P.; Palik, I. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Muhammad, N.; Khan, A.D.; Deng, Z.-L.; Khan, K.; Yadav, A.; Liu, Q.; Ouyang, Z. Plasmonic spectral splitting in ring/rod metasurface. Nanomaterials 2017, 7, 397. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Odom, T.W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 2011, 6, 423–427. [Google Scholar] [CrossRef]
- Kogelnik, H.; Ramaswamy, V. Scaling rules for thin-film optical waveguides. Appl. Opt. 1974, 13, 1857–1862. [Google Scholar] [CrossRef]
- Rybin, M.V.; Kapitanova, P.V.; Filonov, D.S.; Slobozhanyuk, A.P.; Belov, P.A.; Kivshar, Y.S.; Limonov, M.F. Fano resonances in antennas: General control over radiation patterns. Phys. Rev. B 2013, 88, 205106. [Google Scholar] [CrossRef] [Green Version]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543. [Google Scholar] [CrossRef]
Q | FOM | ||||
---|---|---|---|---|---|
FR1 | 645.790 | 644.895 | 360 | 0.387 | 139 |
FR2 | 708.771 | 707.681 | 325 | 0.324 | 105 |
θ (Step is 0.05°) | 13.90 | 13.95 | 14.00 | 14.05 | 14.10 | |
---|---|---|---|---|---|---|
Q | FR1 | 364 | 368 | 364 | 363 | 376 |
FR2 | 320 | 317 | 314 | 314 | 315 |
Mechanism | Q | Waveband | FWHM (nm) | Structure | S (nm/RIU) | Ref. |
---|---|---|---|---|---|---|
EIT | 483 | Near infrared | --- | All-dielectric ring bar | 289 | [6] |
EIT | 139 | Near infrared | --- | Perpendicular bar | 294 | [30] |
SLR | 147 | Near infrared | 4.8 | MIM lattice array | 368 | [9] |
SLR | 2340 | Near infrared | 0.66 | Au array | --- | [23] |
Fano | 9700 | Near infrared | --- | All-dielectric pillars | 344 | [22] |
Fano | 196 | Near infrared | --- | Au Ring/Rod Metasurface | --- | [47] |
Fano | 23.4 | Visible light | --- | Dielectric/metal array | 535 | [38] |
Fano | --- | Near infrared | --- | Dielectric waveguide | 250 | [29] |
Fano | 12.8 | THZ | --- | Plasmonic metasurface | 497.8 | [16] |
Fano | 690 | Visible light | 1.7 | Lattice array/Waveguide | 196 | In this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chen, Y.; Liu, M.; Xiao, G.; Luo, Y.; Liu, H.; Li, J.; Yuan, L. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range. Nanomaterials 2021, 11, 1583. https://doi.org/10.3390/nano11061583
Yang H, Chen Y, Liu M, Xiao G, Luo Y, Liu H, Li J, Yuan L. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range. Nanomaterials. 2021; 11(6):1583. https://doi.org/10.3390/nano11061583
Chicago/Turabian StyleYang, Hongyan, Yupeng Chen, Mengyin Liu, Gongli Xiao, Yunhan Luo, Houquan Liu, Jianqing Li, and Libo Yuan. 2021. "High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range" Nanomaterials 11, no. 6: 1583. https://doi.org/10.3390/nano11061583
APA StyleYang, H., Chen, Y., Liu, M., Xiao, G., Luo, Y., Liu, H., Li, J., & Yuan, L. (2021). High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range. Nanomaterials, 11(6), 1583. https://doi.org/10.3390/nano11061583