Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methodologies
2.2.1. Drug and Drug-Bearing Emulsion
2.2.2. Emulsion Texture and Stability
2.2.3. Particle Size, Charge and Stability Measurements
2.2.4. Models of the Interface Using Tensiometry
2.2.5. Microscopic Imaging of Oil Droplets and Nanoparticles
3. Results and Discussion
3.1. The Model System and Control
3.2. Exposure to Harsh Environments and Interfacial Suitability
3.3. Surface Tension and Interfacial Structure Limitations of Drug and Stabilizer-Emulsifier
3.4. Bulk Effects Related to Viscosity
3.5. Coalescence and Interfacial Destabilisation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarker, D.K. Section II: Forms, uses and applications: Biopharmaceutics (Chapter 6–11). In Pharmaceutical Emulsions: A Drug Developer’s Toolbag; Wiley-Blackwell: Chichester, UK, 2013; pp. 67–116. ISBN 978-0-470-97683-8. [Google Scholar]
- Yucel, U.; Elias, R.J.; Coupland, J.W. Solute distribution and stability in emulsion—Based delivery systems: An EPR study. J. Colloid Interface Sci. 2012, 377, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Montes de Oca-Ávalos, J.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Washington, C. Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev. 1996, 20, 131–145. [Google Scholar] [CrossRef]
- Sarker, D.K. Engineering of nanoemulsions for drug delivery. Curr. Drug Deliv. 2005, 2, 297–310. [Google Scholar] [CrossRef]
- Alam, M.A.; Al-Janoobi, F.I.; Alzahrani, K.A.; Al-Agamy, M.H.; Abdelgalil, A.A.; Al-Mohizea, A.M. In-vitro efficacy of topical microemulsions of clotrimazole and ketoconazole; and in-vivo performance of clotrimazole microemulsion. J. Drug Deliv. Sci. Tech. 2017, 39, 408–416. [Google Scholar] [CrossRef]
- Arias, E.M.; Guiró, P.; Rodriguez-Abreu, C.; Solans, C.; Escribano-Ferrer, E.; García-Celma, M.J. Cubic liquid crystalline structures in diluted, concentrated and highly concentrated emulsions for topical application: Influence on drug release and human skin permeation. Int. J. Pharm. 2019, 569, 118531. [Google Scholar] [CrossRef]
- Krishnaiah, Y.S.; Xu, X.; Rahman, Z.; Yang, Y.; Katragadda, U.; Lionberger, R.; Peters, J.R.; Uhl, K.; Khan, M.A. Development of performance matrix for generic product equivalence of acyclovir topical creams. Int. J. Pharm. 2014, 475, 110–122. [Google Scholar] [CrossRef]
- Sharma, P.K.; Panda, A.; Parajuli, S.; Badani Prado, R.M.; Kundu, S.; Repka, M.; Ureña-Benavides, E.; Narasimha Murthy, S. Effect of surfactant on quality and performance attributes. Int. J. Pharm. 2021, 596, 120210. [Google Scholar] [CrossRef] [PubMed]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Armoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef]
- Sarker, D.K.; Axelos, M.; Popineau, Y. Methylcellulose-induced stability changes in protein-based emulsions. Colloids Surf. B Biointerfaces 1999, 12, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Sarker, D.K. Architectures and mechanical properties of drugs and complexes of surface-active compounds at air-water and oil-water interfaces. Curr. Drug Discov. Technol. 2019, 16, 11–29. [Google Scholar] [CrossRef]
- Xu, Y.; Melkis, K.; Sia, C.T.; Sarker, D.K. Hydrophobic Modification of Copper Nanospheres for Incorporation into Poloxamer Micelles, Aggregated Micellar Nanocages and Supramolecular Assemblies. Curr. Nanomater. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Dichello, G.A.; Fukuda, T.; Maekawa, T.; Whitby, R.L.; Mikhalovsky, S.V.; Alavijeh, M.; Pannala, A.S.; Sarker, D.K. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur. J. Pharm. Sci. 2017, 105, 55–63. [Google Scholar] [CrossRef]
- Kerstens, S.; Murray, B.S.; Dickinson, E. Microstructure of β-lactoglobulin- stabilized emulsions containing non-ionic surfactant and excess free protein: Influence of heating. J. Colloid Interface Sci. 2006, 296, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Al-Hanbali, O.; Rutt, K.J.; Sarker, D.K.; Hunter, A.C.; Moghimi, S.M. Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J. Nanosci. Nanotechnol. 2006, 6, 3126–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions solely stabilized by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- Sarker, D.K.; Wilde, P.J.; Clark, D.C. Competitive adsorption of L-lysophosphatidylcholine/-lactoglobulin mixtures at the interfaces of foams and foam lamellae. Colloids Surf. B Biointerfaces 1995, 3, 349–356. [Google Scholar] [CrossRef]
- Sarker, D.K. Sculpted nanoscale polymer films on micrometer bubbles. Curr. Nanosci. 2005, 1, 157–168. [Google Scholar] [CrossRef]
- Mackie, A.R.; Wilde, P.J.; Wilson, D.R.; Clark, D.C. Competitive effects in the adsorbed layer of oil-in-water emulsions stabilized by -lactoglobulin and Tween 20 mixtures. J. Chem. Soc. Faraday Trans. 1993, 89, 2755–2759. [Google Scholar] [CrossRef]
- Wilde, P.J.; Clark, D.C. The competitive displacement of -lactoglobulin by Tween 20 from oil-water and air-water interfaces. J. Colloid Interface Sci. 1993, 155, 48–54. [Google Scholar] [CrossRef]
- Gómez-Carracedo, A.; Alvarez-Lorenzo, C.; Gómez-Amoza, J.L.; Conchiero, A. Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. Int. J. Pharm. 2004, 274, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Bandi, S.P.; Bhatnagar, S.; Venuganti, V.V. Advanced materials for drug delivery across mucosal barriers. Acta Biomater. 2021, 119, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shu, G.F.; Lu, K.J.; Xu, X.L.; Sun, M.C.; Qi, J.; Huang, Q.L.; Tan, W.Q.; Du, Y.Z. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficacy of psoriasis. J. Nanobiotechnol. 2020, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Slavova, T.G.; Radulova, G.M.; Kralchevsky, P.A.; Danov, K.D. Encapsulation of fragrances and gels by core-shell structures from silica nanoparticles, surfactant and polymer: Effect of particle size. Colloids Surf. A 2020, 606, 125588. [Google Scholar] [CrossRef]
- Hiranphinyophat, S.; Otaka, A.; Asaumi, Y.; Fujii, S.; Iwasaki, Y. Particle-stabilized oil-in-water emulsions as a platform for topical lipophilic drug delivery. Colloids Surf. B Biointerfaces 2021, 197, 111423. [Google Scholar] [CrossRef]
- Collins, G.; Patel, A.; Dilley, A.; Sarker, D.K. Molecular modeling directed by an interfacial test apparatus for the evaluation of protein and polymer ingredient function in situ. J. Agric. Food Chem. 2008, 56, 3846–3855. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, G.A.; Sarker, D.K.; Al-Hanbali, O.; Georgiev, G.D.; Lalchev, Z. Effects of poly(ethylene glycol) chains conformational transition on the properties of DMPC/DMPE-PEG thin liquid films and monolayers. Colloids Surf. B Biointerfaces 2007, 59, 184–193. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A. Incorporation of small quantities of surfactant as a way to improve the rheological and diffusional behaviour of carbopol gels. Int. J. Pharm. 2001, 77, 59–75. [Google Scholar]
- Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A. Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media Part I: Nonionic surfactant. Int. J. Pharm. 2003, 258, 165–177. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A. Controlled release of estradiol solubilized in carbopol/surfactant aggregates. J. Control. Release 2003, 93, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Moustafine, R.I.; Viktorova, A.S.; Khutoryanskiy, V.V. Intermolecular complexes of Carbopol® 971and poly(2-ethyl-2-oxazoline): Physicochemical studies of complexation and formulations for oral drug delivery. Int. J. Pharm. 2019, 558, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Slastanova, A.; Campbell, R.A.; Snow, T.; Mould, E.; Li, P.; Welbourn, R.H.; Chen, M.; Robles, E.; Briscoe, W.H. Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interface. J. Colloid Interface Sci. 2020, 561, 181–194. [Google Scholar] [CrossRef]
- Caserta, S.; Simeone, M.; Guido, S. Evolution of drop size distribution of polymer blends under shear flow by optical sectioning. Rheol. Acta 2004, 43, 491–501. [Google Scholar] [CrossRef]
- Melzer, E.; Kreuter, J.; Daniels, R. Ethylcellulose: A new type of emulsion stabilizer. Eur. J. Pharm. Biopharm. 2003, 56, 23–27. [Google Scholar] [CrossRef]
- Bratskaya, S.; Avramenko, V.; Schwartz, S.; Philippova, I. Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 168–176. [Google Scholar] [CrossRef]
- De Lisi, R.; Lazzora, G.; Lombardo, R.; Milioto, S.; Muratore, N.; Turco Liven, M.L. Adsorption of triblock copolymers and their and their homopolymers at lamponite clay/solution interface. The role played by the copolymer nature. Phys. Chem. Chem. Phys. 2005, 7, 3994–4001. [Google Scholar]
- Kruglyakov, P.M.; Nushtayeva, A.V.; Vilkova, N.G. Experimental investigation of capillary pressure influence on breaking of emulsions stabilized by solid particles. J. Colloid Interface Sci. 2004, 276, 465–474. [Google Scholar] [CrossRef]
- del Castillo-Santaella, T.; Peula-Garcia, J.M.; Maldonaldo-Valderrama, J.; Jódar-Reyes, A.B. Interaction of surfactant and protein at the O/W interface and its effect on colloid and biological properties of polymeric nanocarriers. Colloids Surf. B Biointerfaces 2019, 173, 295–302. [Google Scholar] [CrossRef]
- Rosen, M.J.; Zhou, Q. Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation. Langmuir 2001, 17, 3532–3537. [Google Scholar] [CrossRef]
Sample Emulsion | Incorporated BMP (mM) | Diameter, D4,3 (μm) |
---|---|---|
Tween alone | - | 55.1 ± 0.96 |
Tween-BMP1 | 0.10 | 55.3 ± 0.83 |
Tween-BMP2 | 0.25 | 54.7 ± 0.75 |
Tween-BMP3 | 0.45 | 55.5 ± 1.01 |
Tween-BMP4 | 0.65 | 55.2 ± 0.77 |
Tween-BMP5 | 0.80 | 55.8 ± 1.54 |
Tween-BMP6 | 1.00 | 57.0 ± 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adu-Gyamfi, N.; Sarker, D.K. Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials. Nanomaterials 2021, 11, 1612. https://doi.org/10.3390/nano11061612
Adu-Gyamfi N, Sarker DK. Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials. Nanomaterials. 2021; 11(6):1612. https://doi.org/10.3390/nano11061612
Chicago/Turabian StyleAdu-Gyamfi, Nana, and Dipak K. Sarker. 2021. "Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials" Nanomaterials 11, no. 6: 1612. https://doi.org/10.3390/nano11061612
APA StyleAdu-Gyamfi, N., & Sarker, D. K. (2021). Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials. Nanomaterials, 11(6), 1612. https://doi.org/10.3390/nano11061612