Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of PQQ–CNT-Ab2
2.3. Preparation of Sensor Electrode
2.4. Procedure for PSA Detection
3. Results and Discussion
3.1. Detection Principle
3.2. Feasibility of the Method
3.3. Optimization of Experimental Conditions
3.4. Sensitivity
3.5. Selectivity and Stability
3.6. Serum Sample Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors-A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Villalonga, A.; Martínez-García, G.; Parrado, C.; Villalonga, R. Dendrimers as soft nanomaterials for electrochemical immunosensors. Nanomaterials 2019, 9, 1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, X.M.; Zhang, B.; Tang, J.; Liu, B.Q.; Lai, W.Q.; Tang, D.P. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta 2013, 78, 1. [Google Scholar] [CrossRef] [PubMed]
- Pothipor, C.; Wiriyakun, N.; Putnin, T.; Ngamaroonchote, A.; Jakmunee, J.; Ounnunkad, K.; Laocharoensuk, R.; Aroonyadet, N. Highly sensitive biosensor based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver-gold nanoparticle labelling for prostate cancer detection. Sens. Actuators B Chem. 2019, 296, 126657. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, J.; Li, Q.F.; Tang, D.P.; Chen, G.N.; Yang, H. In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem. Commun. 2013, 49, 1530. [Google Scholar] [CrossRef]
- Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. An immunosensing device based on inhibition of mediator’s faradaicprocess for early diagnosis of prostate cancer using bifunctionalnanoplatform reinforced by carbon nanotube. J. Pharmaceut. Biomed. 2019, 172, 259. [Google Scholar] [CrossRef]
- Kokkinos, C. Electrochemical DNA biosensors based on labeling with nanoparticles. Nanomaterials 2019, 9, 1361. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Aziz, M.A.; Yang, H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc. 2006, 128, 16022. [Google Scholar] [CrossRef]
- Dong, H.; Jin, S.; Ju, H.; Hao, K.; Xu, L.P.; Lu, H.; Zhang, X. Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal. Chem. 2012, 84, 8670. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Yadav, S.; Isam, M.N.; Nguyen, N.T.; Salomon, C.; Kline, R.; Alamri, H.R.; Alothman, Z.A.; Yamauchi, Y.; Hossain, M.S.A.; et al. Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 2017, 89, 11005. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Ma, Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim. Acta 2017, 184, 969. [Google Scholar] [CrossRef]
- Tang, J.; Tang, D. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: A review. Microchim. Acta 2015, 182, 2077. [Google Scholar] [CrossRef]
- Wang, Q.; Gan, X.; Zang, R.; Chai, Y.; Yuan, Y.; Yuan, R. An amplified electrochemical proximity immunoassay for the total protein of Nosemabombycis based on the catalytic activity of Fe3O4 NPs towards methylene blue. Biosens. Bioelectron. 2016, 81, 382. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Wei, Q.; Du, B.; Wu, D.; Li, H. Ultrasensitive nonenzymatic immunosensor based on bimetallic gold–silver nanoclusters synthesized by simple mortar grinding route. Sens. Actuators B Chem. 2014, 194, 64. [Google Scholar] [CrossRef]
- Li, W.; Shu, D.; Zhang, D.; Ma, Z. Multi-amplification of the signal of voltammetric immunosensors: Highly sensitive detection of tumor marker. Sens. Actuators B Chem. 2018, 262, 50. [Google Scholar] [CrossRef]
- Fang, C.S.; Oh, K.H.; Oh, A.; Lee, K.; Park, S.; Kim, S.; Parka, J.K.; Yang, H. An ultrasensitive and incubation-free electrochemical immunosensor using a gold-nanocatalyst label mediating outer-sphere-reaction-philic and inner-sphere-reaction-philic species. Chem. Commun. 2016, 52, 5884. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Ran, X.X.; Chen, A.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Efficient electrochemical self-catalytic platform based on L-cyshemin/ G-quadruplex and its application for bioassay. Anal. Chem. 2018, 90, 9109. [Google Scholar] [CrossRef]
- Akanda, M.R.; Choe, Y.L.; Yang, H. “Outer-sphere to inner-sphere” redox cycling for ultrasensitive immunosensors. Anal. Chem. 2012, 84, 1049. [Google Scholar] [CrossRef]
- Akanda, M.R.; Ju, H. An integrated redox cycling for electrochemical enzymatic signal enhancement. Anal. Chem. 2017, 89, 13480. [Google Scholar] [CrossRef]
- Akanda, M.R.; Tamilavan, V.; Park, S.; Jo, K.; Hyun, M.H.; Yang, H. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7. Anal. Chem. 2013, 85, 1631. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Jo, K.; Lee, J.W.; Yang, H. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current. Anal. Chem. 2007, 79, 2790. [Google Scholar] [CrossRef]
- Kang, C.; Kang, J.; Lee, N.S.; Yoon, Y.H.; Yang, H. DT-diaphorase as a bifunctional enzyme label that allows rapid enzymatic amplification and electrochemical redox cycling. Anal. Chem. 2017, 89, 7974. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Ma, F.; Zhao, F.; He, Q.; Du, J.; Li, S.; Chen, J.; Liu, L. Comparing the performances of electrochemical sensors usingp-aminophenol redox cycling by different reductants on goldelectrodes modified with self-assembled monolayers. Electrochim. Acta 2013, 109, 348. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, H.; Du, J.; Xia, N. Electrochemical-chemical-chemical redox cycling triggered by thiocholine and hydroquinone with ferrocenecarboxylic acid as theredox mediator. Electrochim. Acta 2014, 139, 323. [Google Scholar] [CrossRef]
- Xia, N.; Zhang, Y.; Wei, X.; Huang, Y.; Liu, L. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Anal. Chim. Acta 2015, 878, 95. [Google Scholar] [CrossRef]
- Muguruma, H.; Iwasa, H.; Hidaka, H.; Hiratsuka, A.; Uzawa, H. Mediatorless direct electron transfer between flavin adenine dinucleotide-dependent glucose dehydrogenase and single-walled carbon nanotubes. ACS Catal. 2017, 7, 725. [Google Scholar] [CrossRef]
- Patrice, F.T.; Qiu, K.; Zhao, L.J.; Fodjo, E.K.; Li, D.W.; Long, Y.T. Electrocatalytic oxidation of tris(2-carboxyethyl)phosphine at pyrroloquinoline quinone modified carbon nanotube through single nanoparticle collision. Anal. Chem. 2018, 90, 6059. [Google Scholar] [CrossRef]
- Patrice, F.T.; Qiu, K.; Zhao, L.J.; Fodjo, E.K.; Li, D.W.; Long, Y.T. Individual modified carbon nanotube collision for electrocatalytic oxidation of hydrazine in aqueous solution. ACS Appl. Nano Mater. 2018, 1, 2069. [Google Scholar] [CrossRef]
- Kanninen, P.; Ruiz, V.; Kallio, T.; Anoshkin, I.V.; Kauppinen, E.I.; Kontturi, K. Simple immobilization of pyrroloquinoline quinone on few-walled carbon nanotubes. Electrochem. Commun. 2010, 12, 1257. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Kirchhoff, J.R. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 2002, 74, 1349. [Google Scholar] [CrossRef] [PubMed]
- Devasurendra, A.M.; Zhu, T.; Kirchhoff, J.R. Detection of thiols by o-quinone nanocomposite modified electrodes. Electroanalysis 2016, 28, 2972. [Google Scholar] [CrossRef]
- Emahi, I.; Mulvihill, I.M.; Baum, D.A. Pyrroloquinoline quinone maintains redox activity when bound to a DNA aptamer. RSC Adv. 2015, 5, 7450. [Google Scholar] [CrossRef]
- Ostuni, E.; Yan, L.; Whitesides, G.M. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids Surf. B Biointerfaces 1999, 15, 3. [Google Scholar] [CrossRef]
- Fragoso, A.; Laboria, N.; Latta, D.; O’Sullivan, C.K. Electron permeable self-assembled monolayers of dithiolated aromatic scaffolds on gold for biosensor applications. Anal. Chem. 2008, 80, 2556. [Google Scholar] [CrossRef]
- Liu, L.; Deng, D.; Xing, Y.; Li, S.; Yuan, B.; Chen, J.; Xia, N. Activity analysis of the carbodiimide-mediated amine coupling reaction on self-assembled monolayers by cyclic voltammetry. Electrochim. Acta 2013, 89, 616. [Google Scholar] [CrossRef]
- Xiao, S.J.; Brunner, S.; Wieland, M. Reactions of surface amines with heterobifunctional cross-linkers bearing both succinimidyl ester and maleimide for grafting biomolecules. J. Phys. Chem. B 2004, 108, 16508. [Google Scholar] [CrossRef]
- Zhang, L.; Miranda-Castro, R.; Stines-Chaumeil, C.; Mano, N.; Xu, G.; Mavré, F.; Limoges, B. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: A sensitive strategy for PQQ detection down to picomolar levels. Anal. Chem. 2014, 86, 2257. [Google Scholar] [CrossRef]
- Durand, F.; Limoges, B.; Mano, N.; Mavré, F.; Miranda-Castro, R.; Savéant, J.M. Effect of substrate inhibition and cooperativity on the electrochemical responses of glucose dehydrogenase. Kinetic characterization of wild and mutant types. J. Am. Chem. Soc. 2011, 133, 12801. [Google Scholar] [CrossRef]
- Cui, Z.; Wu, D.; Zhang, Y.; Ma, H.; Li, H.; Du, B.; Wei, Q.; Ju, H. Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels. Anal. Chim. Acta 2014, 807, 44. [Google Scholar] [CrossRef]
- Ma, H.; Mao, K.; Li, H.; Wu, D.; Zhang, Y.; Du, B.; Wei, Q. Ultrasensitive multiplexed immunosensors for the simultaneous determination of endocrine disrupting compounds using Pt@SBA-15 as a non-enzymatic label. J. Mater. Chem. B 2013, 1, 5137. [Google Scholar] [CrossRef]
- Shen, W.J.; Zhuo, Y.; Chai, Y.Q.; Yang, Z.H.; Han, J.; Yuan, R. Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection. ACS Appl. Mater. Interfaces 2015, 7, 4127. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Wu, S.; Song, J.; Zhao, Y.; Ge, Y.; Meng, C. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Anal. Chim. Acta 2016, 906, 80. [Google Scholar] [CrossRef]
- Wu, D.; Ma, H.; Zhang, Y.; Jia, H.; Yan, T.; Wei, Q. Corallite-like magnetic Fe3O4@MnO2@Pt nanocomposites as multiple signal amplifiers for the detection of carcinoembryonic antigen. ACS Appl. Mater. Interfaces 2015, 7, 18786. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Wang, Y.; Wang, M.; Shao, Y.; Jiao, Y.; Zhu, Y. A redox cycling-amplified electrochemical immunosensor for α-fetoprotein sensitive detection via polydopamine nanolabels. Nanoscale 2018, 10, 13572. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Added (ng/mL) | Found (ng/mL) | ELISA (ng/mL) |
---|---|---|---|
1 | 0.00 | 0.048 ± 0.005 | 0.062 ± 0.007 |
2 | 0.11 | 0.151 ± 0.017 | 0.177 ± 0.016 |
3 | 0.33 | 0.375 ± 0.038 | 0.379 ± 0.037 |
4 | 0.66 | 0.691 ± 0.071 | 0.715 ± 0.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Deng, D.; Xia, N.; Hao, Y.; Liu, L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. Nanomaterials 2021, 11, 1757. https://doi.org/10.3390/nano11071757
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. Nanomaterials. 2021; 11(7):1757. https://doi.org/10.3390/nano11071757
Chicago/Turabian StyleMa, Xiaohua, Dehua Deng, Ning Xia, Yuanqiang Hao, and Lin Liu. 2021. "Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine" Nanomaterials 11, no. 7: 1757. https://doi.org/10.3390/nano11071757
APA StyleMa, X., Deng, D., Xia, N., Hao, Y., & Liu, L. (2021). Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. Nanomaterials, 11(7), 1757. https://doi.org/10.3390/nano11071757