Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of PLGA Microcapsules
2.2.2. Preparation of Porous PLGA Microcapsules
2.2.3. Characterization of PLGA Microcapsules
2.2.4. Determination of Encapsulation Efficiency
2.2.5. Release Properties of the PLGA Microcapsules
3. Results
3.1. Effect of PLGA Concentration on Microcapsule Morphology
3.2. Effect of Polyvinyl Alcohol Concentration on Microcapsule Morphology
3.3. Effect of the Volume Ratio of the Internal Water Phase to the Oil Phase on the Microcapsule Morphology
3.4. Effect of the Volume Ratio of the Oil Phase to the External Water Phase on Microcapsule Morphology
3.5. Effect of Shear Rate on Microcapsule Morphology
3.6. Effect of the Volume Ratio of Each Phase on the Encapsulation Efficiency of PLGA Microcapsules
3.7. Effect of Different Phase Volume Ratios on the Sustained Release Performance of PLGA Microcapsules
3.8. Preparation of Porous PLGA Microcapsules
3.9. Effect of BSA Volume on the Encapsulation Efficiency of PLGA Microcapsules
3.10. Effect of BSA Volume on the Sustained Release of PLGA Microcapsules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zambrano, V.; Bustos, R.; Mahn, A. Insights about stabilization of sulforaphane through microencapsulation. Heliyon 2019, 5, e02951. [Google Scholar] [CrossRef]
- Maurya, V.K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. [Google Scholar] [CrossRef] [PubMed]
- Tarone, A.G.; Cazarin, C.B.B.; Junior, M.R.M. Anthocyanins: New techniques and challenges in microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, Q.; Cui, G.; Guo, X.; Wei, B.; Gan, C.; Li, W.; Mo, D.; Lu, R.; Cui, J. Release-controlled microcapsules of thiamethoxam encapsulated in beeswax and their application in field. J. Environ. Sci. Health B 2020, 55, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Tolve, R.; Cela, N.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Galgano, F. Microencapsulation as a Tool for the Formulation of Functional Foods: The Phytosterols’ Case Study. Foods 2020, 9, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Luan, J.; Yu, X.; Wang, X. The preparation of novel mineral-based mesoporous microsphere by microencapsulation technology and its application in the adsorption of dye contaminants. Water Sci. Technol. 2020, 81, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Wang, J.; Zhang, R.; Kong, R.; Lu, W.; Wang, X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Rahaiee, S.; Assadpour, E.; Esfanjani, A.F.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [Google Scholar] [CrossRef]
- Fattahi, P.; Rahimian, A.; Slama, M.Q.; Gwon, K.; Revzin, A. Core-shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor. Sci. Rep. 2021, 11, 7177. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, V.; Pellicano, L.; Farina, H.; Pargoletti, E.; Annunziata, L.; Ortenzi, M.A.; Stori, A.; Cappelletti, G. Design of New Polyacrylate Microcapsules to Modify the Water-Soluble Active Substances Release. Polymers 2021, 13, 809. [Google Scholar] [CrossRef] [PubMed]
- Rudke, A.R.; Heleno, S.A.; Fernandes, I.P.; Prieto, M.A.; Gonçalves, O.H.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. LWT Food Sci. Technol. 2019, 103, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Danafar, H.; Sharafi, A.; Kheiri Manjili, H.; Andalib, S. Sulforaphane delivery using mPEG-PCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol. 2017, 22, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, G.; Guo, Z.; Wang, P.; Wang, A. Preparation of Microcapsules Coating and the Study of Their Bionic Anti-Fouling Performance. Materials 2020, 13, 1669. [Google Scholar] [CrossRef] [Green Version]
- Bah, M.G.; Bilal, H.M.; Wang, J. Fabrication and application of complex microcapsules: A review. Soft Matter. 2020, 16, 570–590. [Google Scholar] [CrossRef]
- Singh, M.N.; Hemant, K.S.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar]
- Hardee, C.L.; Arévalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes 2017, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; van Straten, D.; Broekman, M.L.D.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020, 10, 1355–1372. [Google Scholar] [CrossRef]
- Cui, W.; Li, J.; Decher, G. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv. Mater. 2016, 28, 1302–1311. [Google Scholar] [CrossRef]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [Green Version]
- Kaseem, M.; Hamad, K.; Ur Rehman, Z. Review of Recent Advances in Polylactic Acid/TiO2 Composites. Materials 2019, 12, 3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhai, Y.; Xu, J.; Zhou, T.; Cen, L. Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. Int. J. Pharm. 2021, 593, 120173. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Lu, J.; Li, M.; Zou, X.; Liu, Y.; Wang, C.; Wang, L. Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. Biomed. Pharmacother. 2021, 134, 111171. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.T.; Artunduaga, J.J.; Ortiz, C.C.; Torres, R.G. Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus. Biomedica 2017, 37, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, R.; Abdollahi, M.; Zadeh, E.E.; Khodabakhshi, K.; Badeli, A.; Bagheri, H.; Hosseinkhani, S. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci. Rep. 2018, 8, 9854. [Google Scholar] [CrossRef]
- Freitas, S.; Merkle, H.P.; Gander, B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. J. Control Release 2005, 102, 313–332. [Google Scholar] [CrossRef]
- Emami, J.; Pourmashhadi, A.; Sadeghi, H.; Varshosaz, J.; Hamishehkar, H. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm. Dev. Technol. 2015, 20, 791–800. [Google Scholar] [CrossRef]
- Fuchigami, T.; Kawamura, R.; Kitamoto, Y.; Nakagawa, M.; Namiki, Y. A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials 2012, 33, 1682–1687. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Yang, F.; Cui, H.; Wu, D. Development of a Chlorantraniliprole Microcapsule Formulation with a High Loading Content and Controlled-Release Property. J. Agric. Food Chem. 2018, 66, 6561–6568. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Yang, F.; Wang, X.; Shen, H.; Cui, H.; Wu, D. Construction of a controlled-release delivery system for pesticidesusing biodegradable PLA-based microcapsules. Colloids Surf. B Biointerfaces 2016, 144, 38–45. [Google Scholar] [CrossRef]
PLGA Concentration (mg/mL) | 20 | 40 | 60 |
---|---|---|---|
Size(nm) | 245 ± 7 | 631 ± 5 | 1246 ± 7 |
Thickness of the microcapsule wall(nm) | 25 ± 3 | 60 ± 6 | 135 ± 7 |
PVA Concentration (mg/mL) | 1 | 3 | 5 |
---|---|---|---|
Size(nm) | 648 ± 6 | 478 ± 4 | 264 ± 3 |
Internal Water Phase/Oil Phase | 1:3 | 1:5 | 1:7 |
---|---|---|---|
Size(nm) | 458 ± 8 | 264 ± 6 | 276 ± 6 |
Oil Phase/External Water Phase | 1:3 | 1:5 | 1:7 |
---|---|---|---|
Size(nm) | 878 ± 9 | 234 ± 6 | 203 ± 8 |
Shearing Rate (rpm) | 8000 | 10,000 | 12,000 |
---|---|---|---|
Size(nm) | 378 ± 4 | 224 ± 7 | 257 ± 3 |
Phase Volume Ratio | Encapsulation Rate |
---|---|
internal water phase/oil phase = 1:5 oil phase/external water phase = 1:5 | 61.47% |
internal water phase/oil phase = 1:5 oil phase/external water phase = 1:7 | 63.68% |
internal water phase/oil phase = 1:7 oil phase/external water phase = 1:5 | 68.75% |
internal water phase/oil phase = 1:7 oil phase/external water phase = 1:7 | 69.45% |
Proportion of BSA Solution | 10% | 15% | 20% |
---|---|---|---|
encapsulation rate | 58.23% | 55.24% | 52.68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Wang, C.; Guo, L.; Xu, C.; Wang, Y.; Sun, C.; Cui, H.; Zhao, X. Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. Nanomaterials 2021, 11, 1758. https://doi.org/10.3390/nano11071758
Ren S, Wang C, Guo L, Xu C, Wang Y, Sun C, Cui H, Zhao X. Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. Nanomaterials. 2021; 11(7):1758. https://doi.org/10.3390/nano11071758
Chicago/Turabian StyleRen, Shuaikai, Chunxin Wang, Liang Guo, Congcong Xu, Yan Wang, Changjiao Sun, Haixin Cui, and Xiang Zhao. 2021. "Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System" Nanomaterials 11, no. 7: 1758. https://doi.org/10.3390/nano11071758
APA StyleRen, S., Wang, C., Guo, L., Xu, C., Wang, Y., Sun, C., Cui, H., & Zhao, X. (2021). Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. Nanomaterials, 11(7), 1758. https://doi.org/10.3390/nano11071758