Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and General Morphology
3.2. Temporal Whisker Evolution
3.3. Nanocrystalline Structure
3.4. Oxidation Effect
3.5. Theoretical Evaluation
3.6. Impact and Potential Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Zhang, Y.; Sun, Z. Spontaneous Growth of Metal Whiskers on Surfaces of Solids: A Review. J. Mater. Sci. Technol. 2015, 31, 675–698. [Google Scholar] [CrossRef]
- Fisher, R.M.; Darken, L.S.; Carroll, K.G. Accelerated growth of tin whiskers. Acta Metall. 1954, 2, 368–369, 371–373. [Google Scholar] [CrossRef]
- Smetana, J. Theory of tin whisker growth: “The end game”. IEEE Trans. Electron. Packag. Manuf. 2007, 30, 11–22. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.W.; Williams, M.E.; Stafford, G.R. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits. Acta Mater. 2005, 53, 5033–5050. [Google Scholar] [CrossRef]
- Lee, B.Z.; Lee, D.N. Spontaneous growth mechanism of tin whiskers. Acta Mater. 1998, 46, 3701–3714. [Google Scholar] [CrossRef]
- Bardeen, J.; Herring, C. Imperfections in Nearly Perfect Crystals; Shockley, W., Hollomon, J.H., Maurer, R., Seitz, F., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 1952. [Google Scholar]
- Lothe, J. Theory of dislocation climb in metals. J. Appl. Phys. 1960, 31, 1077–1087. [Google Scholar] [CrossRef]
- Ellis, W.C.; Gibbons, D.F.; Treuting, R.C. Growth and Perfection of Crystals; Doremus, R.H., Roberts, B.W., Turnbull, D., Eds.; John Wiley: New York, NY, USA, 1958. [Google Scholar]
- Frank, F.C. XC. On tin whiskers. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1953, 44, 854–860. [Google Scholar] [CrossRef]
- Eshelby, J.D. Screw dislocations in thin rods. J. Appl. Phys. 1953, 24, 176–179. [Google Scholar] [CrossRef]
- Sun, Z.M.; Barsoum, M.W. Spontaneous room temperature extrusion of Pb nano-whiskers from leaded brass surfaces. J. Mater. Res. 2005, 20, 1087–1089. [Google Scholar] [CrossRef]
- Illés, B.; Krammer, O.; Hurtony, T.; Dušek, K.; Bušek, D.; Skwarek, A. Kinetics of Sn whisker growth from Sn thin-films on Cu substrate. J. Mater. Sci. Mater. Electron. 2020, 31, 16314–16323. [Google Scholar] [CrossRef]
- Vianco, P.T.; Rejent, J.A. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part I: A model. J. Electron. Mater. 2009, 38, 1815–1825. [Google Scholar] [CrossRef] [Green Version]
- Rejent, J.A.; Vianca, P.T. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part II: Experimental study. J. Electron. Mater. 2009, 38, 1826–1837. [Google Scholar] [CrossRef]
- Vianco, P.T.; Neilsen, M.K.; Rejent, J.A.; Grant, R.P. Validation of the Dynamic Recrystallization (DRX) Mechanism for Whisker and Hillock Growth on Sn Thin Films. J. Electron. Mater. 2015, 44, 4012–4034. [Google Scholar] [CrossRef]
- Tu, K.N.; Li, J.C.M. Spontaneous whisker growth on lead-free solder finishes. Mater. Sci. Eng. A 2005, 409, 131–139. [Google Scholar] [CrossRef]
- Buchovecky, E.J.; Du, N.; Bower, A.F. A model of Sn whisker growth by coupled plastic flow and grain boundary diffusion. Appl. Phys. Lett. 2009, 94, 191904. [Google Scholar] [CrossRef]
- Tu, K.N.; Chen, C.; Wu, A.T. Stress analysis of spontaneous Sn whisker growth. J. Mater. Sci. Mater. Electron. 2007, 18, 269–281. [Google Scholar] [CrossRef]
- Jagtap, P.; Kumar, P. Whisker Growth in Sn Coatings: A Review of Current Status and Future Prospects. J. Electron. Mater. 2020, 1–32. [Google Scholar] [CrossRef]
- Kosinova, A.; Wang, D.; Schaaf, P.; Sharma, A.; Klinger, L.; Rabkin, E. Whiskers growth in thin passivated Au films. Acta Mater. 2018, 149, 154–163. [Google Scholar] [CrossRef]
- Hinode, K.; Homma, Y.; Sasaki, Y. Whiskers grown on aluminum thin films during heat treatments. J. Vac. Sci. Technol. Vac. Surf. Film 1996, 14, 2570–2576. [Google Scholar] [CrossRef]
- Illés, B.; Hurtony, T.; Medgyes, B.; Krammer, O.; Dusek, K.; Busek, D. Sn and Bi whisker growth from SAC0307-Mn07 and SAC0307-Bi1-Mn07 ultra-thin film layers. Vacuum 2021, 187, 110121. [Google Scholar] [CrossRef]
- Lindborg, U. A model for the spontaneous growth of zinc, cadmium and tin whiskers. Acta Metall. 1976, 24, 181–186. [Google Scholar] [CrossRef]
- Webb, W.W. Dislocation mechanisms in the growth of palladium whisker crystals. J. Appl. Phys. 1965, 36, 214–221. [Google Scholar] [CrossRef]
- Brusse, J.; Sampson, M. Zinc whiskers: Hidden cause of equipment failure. IT Prof. 2004, 6, 43–47. [Google Scholar] [CrossRef]
- Sobiech, M.; Welzel, U.; Mittemeijer, E.J.; Hügel, W.; Seekamp, A. Driving force for Sn whisker growth in the system Cu-Sn. Appl. Phys. Lett. 2008, 93, 011906. [Google Scholar] [CrossRef]
- Sines, G. Filamentary Crystals grown from the Solid Metal. J. Phys. Soc. Jpn. 1960, 15, 1199–1210. [Google Scholar] [CrossRef]
- Murakami, M.; Kuan, T.S. Thermal strain in lead thin films V: Strain relaxation above room temperature. Thin Solid Films 1980, 66, 381–394. [Google Scholar] [CrossRef]
- Wei, C.C.; Liu, P.C.; Chen, C.; Tu, K.N. Electromigration-induced Pb and Sn whisker growth in SnPb solder stripes. J. Mater. Res. 2008, 23, 2017–2022. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hashimoto, H.; Barsoum, M.W. On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature. Acta Mater. 2007, 55, 3387–3396. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhang, Y.W.; Zhang, W.; Chen, Y.; Gong, X.; Meng, M. The Spontaneous Growth of Pb Whisker from the Pb60Sn40 Solder Layer on the Au Coating. Appl. Mech. Mater. 2015, 798, 406–409. [Google Scholar] [CrossRef]
- Helling, D.E. Lead Whisker Formation in the Gold-Lead System. J. Mater. Eng. Perform. 2019, 28, 1936–1941. [Google Scholar] [CrossRef]
- Avallone, E.A.; Baumeister, T., III; Sadegh, A. Standard Handbook for Mechanical Engineers; McGraw-Hill Education: London, UK, 2007. [Google Scholar]
- Aluminum 6026 Alloy (UNS A96026). Available online: https://www.azom.com/article.aspx?ArticleID=8631#:~:text=Aluminum6026isawrought,tostressandhightemperature (accessed on 7 March 2021).
- Jiang, L.; Jiang, Y.L.; Yu, L.; Su, N.; Ding, Y.D. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2012, 22, 2783–2791. [Google Scholar] [CrossRef]
- Arbilei, M.N. Prediction of mechanical and wear properties of 6026 aluminum alloy waste to be used in prosthetics limbs. AIP Conf. Proc. 2018, 1968, 030035. [Google Scholar]
- Aluminium Alloy—Commercial Alloy—6026—T9 Rod and Bar. Available online: https://www.aalco.co.uk/datasheets/Aluminium-Alloy-6026-T9-Rod-and-Bar_143.ashx (accessed on 7 March 2021).
- Zivkovic, D.; Zivkovic, Z.; Tasic, I. Comparative thermodynamic study of the Pb-Bi2Mg3 system. Thermochim. Acta 2000, 362, 113–120. [Google Scholar] [CrossRef]
- Drotning, W.D. Thermal expansion of molten tin, lead, and aluminum to 1300/sup 0/K. High Temp. Sci. 1979, 11. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W.; Hoffman, E.N.; Doherty, R.D.; Gupta, S.; Zavaliangos, A. Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 2004, 93, 206104. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Ling, C.; Ding, J.; Tian, W.B.; Zhang, Y.M.; Sun, Z.M. Spontaneous Sn whisker formation on Ti2SnC. J. Mater. Sci. Mater. Electron. 2017, 28, 5788–5795. [Google Scholar] [CrossRef]
- Karpov, V.G. Electrostatic theory of metal whiskers. Phys. Rev. Appl. 2014, 1, 044001. [Google Scholar] [CrossRef] [Green Version]
- Li, C.F.; Liu, Z.Q. Microstructure and growth mechanism of tin whiskers on RESn3 compounds. Acta Mater. 2013, 61, 589–601. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, F.; Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2010, 2, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Ding, B.; Gleiter, H. Mesocrystals: Syntheses in metals and applications. Chem. Soc. Rev. 2011, 40, 5347–5360. [Google Scholar] [CrossRef]
- Lv, W.; He, W.; Wang, X.; Niu, Y.; Cao, H.; Dickerson, J.H.; Wang, Z. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 2014, 6, 2531–2547. [Google Scholar] [CrossRef]
- Penn, R.L.; Soltis, J.A. Characterizing crystal growth by oriented aggregation. CrystEngComm 2014, 16, 1409–1418. [Google Scholar] [CrossRef]
- Jiang, B.; Xian, A.P. Observations of ribbon-like whiskers on tin finish surface. J. Mater. Sci. Mater. Electron. 2007, 18, 513–518. [Google Scholar] [CrossRef]
- Courey, K.J.; Asfour, S.S.; Bayliss, J.A.; Ludwig, L.L.; Zapata, M.C. Tin whisker electrical short circuit characteristics—Part I. IEEE Trans. Electron. Packag. Manuf. 2008, 31, 32–40. [Google Scholar] [CrossRef]
- Sobiech, M.; Teufel, J.; Welzel, U.; Mittemeijer, E.J.; Hügel, W. Stress relaxation mechanisms of Sn and SnPb coatings electrodeposited on cu: Avoidance of whiskering. J. Electron. Mater. 2011, 40, 2300–2313. [Google Scholar] [CrossRef]
- Ashworth, M.A.; Dunn, B. An investigation of tin whisker growth over a 32-year period. Circuit World 2016, 42, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Mattila, M.; Hakkarainen, T.; Jiang, H.; Kauppinen, E.I.; Lipsanen, H. Effect of substrate orientation on the catalyst-free growth of InP nanowires. Nanotechnology 2007, 18, 155301. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Yu, J.; Chen, J.; Zhang, Y.; Sun, Z. Confining effect of oxide film on tin whisker growth. J. Mater. Sci. Technol. 2019, 35, 1735–1739. [Google Scholar] [CrossRef]
- Courey, K.J.; Asfour, S.S.; Onar, A.; Bayliss, J.A.; Ludwig, L.L.; Wright, M.C. Tin whisker electrical short circuit characteristics—Part II. IEEE Trans. Electron. Packag. Manuf. 2009, 32, 41–48. [Google Scholar] [CrossRef]
- Totten, G.E. (Ed.) ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys; ASM International: Novelty, OH, USA, 2016; ISBN 978-1-62708-112-2. [Google Scholar]
- Jafary-Zadeh, M.; Praveen Kumar, G.; Branicio, P.; Seifi, M.; Lewandowski, J.; Cui, F. A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. J. Funct. Biomater. 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faupel, F.; Frank, W.; Macht, M.P.; Mehrer, H.; Naundorf, V.; Rätzke, K.; Schober, H.R.; Sharma, S.K.; Teichler, H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 2003, 75, 237–280. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.K.; Garg, N.; Shanavas, K.V.; Sharma, S.M.; Sikka, S.K. Pressure induced crystallization in amorphous silicon. J. Appl. Phys. 2011, 109, 113511. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Lu, K. Pressure effect on crystallization kinetics of an Al-La-Ni amorphous alloy. Acta Mater. 1999, 47, 2449–2454. [Google Scholar] [CrossRef]
- Falqui, A.; Loche, D.; Casu, A. In Situ TEM Crystallization of Amorphous Iron Particles. Crystals 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Hu, W.; Xiao, S. Melting temperature of Pb nanostructural materials from free energy calculation. J. Chem. Phys. 2008, 128, 074710. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Wang, H.; Chen, N.; Wang, Z.; Guo, L.; Deepak, F.L. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Adv. Sci. 2018, 5, 1700992. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.; Mohanta, D. Oriented attachment (OA) mediated characteristic growth of Gd2O3 nanorods from nanoparticle seeds. J. Rare Earths 2016, 34, 158–165. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Zhang, P.; Yu, J.; Zhang, Y.; Sun, Z.M. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater. 2020, 185, 433–440. [Google Scholar] [CrossRef]
- Ashworth, M.A.; Wilcox, G.D.; Higginson, R.L.; Heath, R.J.; Liu, C.; Mortimer, R.J. The effect of electroplating parameters and substrate material on tin whisker formation. Microelectron. Reliab. 2015, 55, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Cao, R.; Zhou, J.; Xue, F.; Liu, Y.; Zhang, P.; Sun, Z.M. A comparative study on the growth behaviors of Sn whiskers and hillocks in a Sn-Al alloy coating under different environments. J. Alloys Compd. 2021, 853, 157101. [Google Scholar] [CrossRef]
- Otsubo, F.; Era, H.; Tsuru, Y.; Hirano, S. TEM analysis of whiskers formation over tin-plated films. Mater. Chem. Phys. 2020, 251, 122985. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Wang, Y.; Zhu, Z.; Gao, X.; Yang, J.; Zhang, H.X. ZnO@ZnS core/shell microrods with enhanced gas sensing properties. RSC Adv. 2015, 5, 2620–2629. [Google Scholar] [CrossRef]
- Kumar, A.; Mohammadi, M.M.; Swihart, M.T. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. Nanoscale 2019, 11, 19058–19085. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Dhanabalan, K.; Roh, S.H.; Kim, S.C.; Jeon, D.; Jin, J.E.; Shim, J.; Jung, H.Y. Preparation and characterization of Pb nanoparticles on mesoporous carbon nanostructure for advanced lead-acid battery applications. J. Mater. Sci. Mater. Electron. 2017, 28, 5669–5674. [Google Scholar] [CrossRef]
- Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Jan, S.A.; Shinwari, Z.K.; Maaza, M. Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arab. J. Chem. 2020, 13, 916–931. [Google Scholar] [CrossRef]
- Perry, D.L. Transparent Electronics: From Synthesis to Applications, 1st ed.; Facchetti, A., Marks, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; ISBN 978-0-470-99077-3. [Google Scholar]
- Saraidarov, T.; Reisfeld, R.; Sashchiuk, A.; Lifshitz, E. Synthesis and characterization of PbS nanorods and nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2007, 37, 173–177. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
Element | wt.% |
---|---|
Al | balance |
Mg | 0.70 |
Si | 0.68 |
Bi | 0.66 |
Mn | 0.59 |
Pb | 0.34 |
Cu | 0.30 |
Fe | 0.27 |
Cr | 0.045 |
Ti | 0.029 |
Zn | 0.025 |
Sn | <0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičević-Klug, M.; Jovičević-Klug, P.; Sever, T.; Feizpour, D.; Podgornik, B. Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment. Nanomaterials 2021, 11, 1842. https://doi.org/10.3390/nano11071842
Jovičević-Klug M, Jovičević-Klug P, Sever T, Feizpour D, Podgornik B. Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment. Nanomaterials. 2021; 11(7):1842. https://doi.org/10.3390/nano11071842
Chicago/Turabian StyleJovičević-Klug, Matic, Patricia Jovičević-Klug, Tina Sever, Darja Feizpour, and Bojan Podgornik. 2021. "Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment" Nanomaterials 11, no. 7: 1842. https://doi.org/10.3390/nano11071842
APA StyleJovičević-Klug, M., Jovičević-Klug, P., Sever, T., Feizpour, D., & Podgornik, B. (2021). Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment. Nanomaterials, 11(7), 1842. https://doi.org/10.3390/nano11071842