Fabrication of Superconducting Nanowires Using the Template Method
Abstract
:1. Introduction
2. Basic Ideas
3. Realizations
3.1. Conventional Superconductors
3.2. High-Temperature Superconductors (HTSc)
3.3. Filling Commercial AAO Templates with High- Superconducting Materials
3.4. Templates to Introduce Defect Structures in thin Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, Y.; Zhang, Y.F.; Bao, X.J.; Han, T.Z.; Tang, Z.; Zhang, L.X.; Zhu, W.G.; Wang, E.; Niu, Q.; Qiu, Z.Q.; et al. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917. [Google Scholar] [CrossRef]
- Zgirski, M.; Riikonen, K.P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 2005, 50, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Charnaya, E.; Tien, C.; Lin, K.; Wur, C.; Kumzerov, Y.A. Superconductivity of gallium in various confined geometries. Phys. Rev. B 1998, 58, 467–472. [Google Scholar] [CrossRef]
- Watson, J. Transition temperature of superconducting indium, thallium, and lead grains. Phys. Rev. B 1970, 2, 1282–1286. [Google Scholar] [CrossRef]
- Li, W.H.; Yang, C.; Tsao, F.; Wu, S.; Huang, P.; Chung, M.; Yao, Y. Enhancement of superconductivity by the small size effect in in nanoparticles. Phys. Rev. B 2005, 72, 214516. [Google Scholar] [CrossRef]
- Ohshima, K.; Fujita, T. Enhanced superconductivity in layers of Ga fine particles. J. Phys. Soc. Jpn. 1986, 55, 2798–2802. [Google Scholar] [CrossRef]
- Hagel, J.; Kelemen, M.; Fischer, G.; Pilawa, B.; Wosnitza, J.; Dormann, E.; v. Löhneysen, H.; Schnepf, A.; Schnöckel, H.; Neisel, U.; et al. Superconductivity of a crystalline Ga 84-cluster compound. Low Temp. Phys. 2002, 129, 133–142. [Google Scholar] [CrossRef]
- Moura, K.O.; Pirota, K.R.; Béron, F.; Jesus, C.B.R.; Rosa, P.F.S.; Tobia, D.; Pagliuso, P.G.; de Lima, O.F. Superconducting Properties in Arrays of Nanostructured β-Gallium. Sci. Rep. 2017, 7, 15306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narlikar, A.V. Superconductors; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Bennemann, K.H.; Ketterson, J.B. (Eds.) Superconductivity; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Tinkham, M.; Lau, C.N. Quantum limit to phase coherence in thin superconducting wires. Appl. Phys. Lett. 2002, 80, 2946–2948. [Google Scholar] [CrossRef]
- Haviland, D. Quantum phase slips. Nat. Phys. 2010, 6, 565–566. [Google Scholar] [CrossRef]
- Bezryadin, A. Superconductivity in Nanowires; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Altomare, F.; Chang, A.M. One-Diemsional Superconductivity in Nanowires; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Awschalom, D.; Berggren, K.K.; Bernien, H.; Bhave, S.; Carr, L.D.; Davids, P.; Economou, S.E.; Englund, D.; Faraon, A.; Fejer, M.; et al. Development of Quantum InterConnects for Next-Generation Information Technologies. PRX Quantum 2021, 2, 017002. [Google Scholar] [CrossRef]
- Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H. Superconducting nanowire single-photon detectors: Physics and applications. Supercond. Sci. Technol. 2012, 25, 063001. [Google Scholar] [CrossRef]
- Korzh, B.A.; Zhao, Q.-Y.; Frasca, S.; Allmaras, J.P.; Autry, T.M.; Bersin, E.A.; Colangelo, M.; Crouch, G.M.; Dane, A.E.; Gerrits, T.; et al. Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector. Nat. Photonics 2020, 14, 250–255. [Google Scholar] [CrossRef] [Green Version]
- You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9, 2673–2692. [Google Scholar] [CrossRef]
- Steinhauer, S.; Gyger, S.; Zwiller, V. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett. 2021, 118, 100501. [Google Scholar] [CrossRef]
- Friedl, M.; Cerveny, K.; Weigele, P.; Tütüncüoglu, G.; Martí-Sánchez, S.; Huang, C.; Patlatiuk, T.; Potts, H.; Sun, Z.H.; Hill, M.O.; et al. Template-assisted scalable nanowire networks. Nano Lett. 2018, 18, 2666–2671. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.K. High-Temperature Superconductors; Springer Series in Materials Science 125; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Huczko, A. Template-based synthesis of nanomaterials. Appl. Phys. A 2000, 70, 365–376. [Google Scholar] [CrossRef]
- Zhang, M.; Bando, Y.; Wada, K. Silicon dioxide nanotubes prepared by anodic alumina as templates. J. Mater. Res. 2000, 15, 387–392. [Google Scholar] [CrossRef]
- Yin, A.J.; Li, J.; Jian, W.; Bennett, A.J.; Xu, J.M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 2001, 79, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Kline, T.R.; Tian, M.; Wang, J.; Sen, A.; Chan, M.W.H.; Mallouk, T.E. Template-grown Metal Nanowires. Inorg. Chem. 2006, 45, 7555–7565. [Google Scholar] [CrossRef]
- Cao, G.; Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface 2008, 136, 45–64. [Google Scholar] [CrossRef]
- Bae, C.; Yoo, H.; Kim, S.; Lee, K.; Kim, J.; Sung, M.M.; Shin, H. Template directed synthesis of oxide nanotubes: Fabrication, characterization, and applications. Chem. Mater. 2008, 20, 756–767. [Google Scholar] [CrossRef]
- Piraux, L.; Dubois, S.; Demoustier-Champagne, S. Template synthesis of nanoscale materials using the membrane porosity. Nucl. Instr. Methods Phys. Res. B 1997, 131, 357–363. [Google Scholar] [CrossRef]
- Dubois, S.; Michel, A.; Eymery, J.P.; Duvail, J.L.; Piraux, L. Fabrication and properties of arrays of superconducting nanowires. J. Mater. Res. 1999, 14, 665–671. [Google Scholar] [CrossRef]
- Schwarzacher, W.; Kasyutich, O.I.; Evans, P.R.; Bardyshire, M.G.; Yi, G.; Fedosyuk, V.M.; Rousseaux, F.; Cambril, E.; Decanini, D. Metal nanostructures prepared by template electrodeposition. J. Magn. Magn. Mater. 1999, 198–199, 185–190. [Google Scholar] [CrossRef]
- Yi, G.; Schwarzacher, W. Single crystal superconductor nanowires by electrodeposition. Appl. Phys. Lett. 1999, 74, 1746–1748. [Google Scholar] [CrossRef]
- Shingubara, S. Fabrication of Nanomaterials Using Porous Alumina Templates. J. Nanoparticle Res. 2003, 5, 17–30. [Google Scholar] [CrossRef]
- Benfield, R.E.; Grandjean, D.; Dore, J.C.; Esfahaniana, H.; Wu, Z.H.; Kröll, M.; Geerkens, M.; Schmid, G. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS. Faraday Discuss. 2004, 125, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kielbasa, J.E.; Carroll, D.L. Controllable fabrication of porous alumina templates for nanostructures synthesis. Mat. Chem. Phys. 2010, 12, 295–300. [Google Scholar] [CrossRef]
- Abdul, M.M.J.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Piraux, L. Magnetic Nanowires. Appl. Sci. 2020, 10, 1832. [Google Scholar] [CrossRef] [Green Version]
- Anodisc™ Membranes, Frameless. Available online: www.whatman.com (accessed on 4 July 2021).
- Wang, J.; Tian, M.; Kumar, N.; Mallouk, T.E. Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition. Nano Lett. 2005, 5, 1247–1253. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Li, Y. Single crystalline YBa2Cu3O7-δ nanowires from a template-assisted sol-gel route. Mater. Chem. Phys. 2004, 86, 409–413. [Google Scholar] [CrossRef]
- Li, P.G.; Fu, X.L.; Chen, L.M.; Zhang, H.Y.; Li, L.H.; Tang, W.H. Fabrication and characterization of YBa2Cu3Oy Superconducting Nanowires. Chin. Phys. Lett. 2005, 22, 651–653. [Google Scholar]
- Koblischka, M.R.; Koblischka-Veneva, A.; Skumryev, V. YBCO and NdBCO nanowires grown by the alumina template method. In Superconductivity: Recent Developments and New Production Technologies; Muralidhar, M., Ed.; NOVA Science Publishers: Commack, NY, USA, 2012; pp. 1–10. [Google Scholar]
- Pang, Y.T.; Meng, G.W.; Zhang, L.D.; Shan, W.J.; Gao, X.Y.; Zhao, A.W.; Mao, Y.Q. Arrays of ordered Pb nanowires with different diameters in different areas embedded in one piece of anodic alumina membrane. J. Phys. Cond. Mater. 2002, 14, 11729–11736. [Google Scholar] [CrossRef]
- Djokic, S.S. Modern Aspects of Electrochemistry 48: Electrodeposition. Theory and Practice; Springer: New York, NY, USA, 2010. [Google Scholar]
- Machado, A.J.S.; Moehlecke, S.; Kopelevich, Y.; Robin, A.; dos Santos, C.A.M. Superconducting YBa2Cu3O7-δ films on SrTiO3 by electrodeposition process. Physica C 2000, 341–348, 2369–2370. [Google Scholar] [CrossRef]
- Phok, S.; Spagnol, P.D.; Chaudhuri, T.; Bhattacharya, R.N. Superconducting YBCO Films Prepared by Electrodeposition and Spray Pyrolysis. MRS Online Proc. Lib. 2005, 868, 56. [Google Scholar] [CrossRef]
- Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Michotte, S.; Piraux, L. Vortex pinning in superconducting Nb thin films deposited on nanoporous alumina templates. Eur. Phys. J. B 2006, 53, 199–203. [Google Scholar] [CrossRef]
- Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Michotte, S.; Piraux, L.; Ye, X. High field matching effects in superconducting Nb porous arrays catalyzed from anodic alumina templates. Physica C 2007, 459, 5–10. [Google Scholar] [CrossRef]
- Vanacken, J.; Vinckx, W.; Moshchalkov, V.V.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Michotte, S.; Piraux, L.; Ye, X. Vortex pinning in superconductors laterally modulated by nanoscale self-assembled arrays. Physica C 2008, 468, 585–588. [Google Scholar] [CrossRef]
- Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.; Piraux, L.; Vanacken, J.; Moshchalkov, V.V.; Mátéfi-Tempfli, S. Quasi-Hexagonal Vortex-Pinning Lattic Using Anondized Aluminium Oxide Nanotemplates. Small 2009, 5, 2413–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.; Piraux, L.; Vanacken, J.; Moshchalkov, V.V.; Mátéfi-Tempfli, S. High magnetic field matching effects in NbN films induced by template grown dense ferromagnetic nanowires arrays. Appl. Phys. Lett. 2009, 95, 252503. [Google Scholar] [CrossRef]
- Piraux, L.; Hallet, X. Artificial vortex pinning arrays in superconducting films deposited on highly ordered anodic alumina templates. Nanotechnology 2012, 23, 355301. [Google Scholar] [CrossRef] [Green Version]
- Michotte, S.; Mátéfi-Tempfli, M.; Piraux, L. 1D-transport properties of single superconducting lead nanowires. Physica C 2003, 391, 369–375. [Google Scholar] [CrossRef]
- Li, C.; Zheng, M.; Li, M.; Zhu, C.; Li, M.; Wang, X.; Li, Z.; Shen, W. Template-based sputtering method for vertically aligned tin nanotube arrays: From fabrication to superconductivity. Thin Solid Films 2013, 542, 14–20. [Google Scholar] [CrossRef]
- De Menten de Horne, F.; Piraux, L.; Michotte, S. Fabrication and physical properties of multilayered superconducting nanowires. Appl. Phys. Lett. 2005, 86, 152510. [Google Scholar] [CrossRef]
- Michotte, S.; Mátéfi-Tempfli, M.; Piraux, L. Investigation of superconducting properties of nanowires prepared by template synthesis. Supercond. Sci. Technol. 2003, 16, 557–561. [Google Scholar] [CrossRef]
- Piraux, L.; Encinas, A.; Vila, L.; Mátéfi-Tempflii, S.; Mátéfi-Tempflii, M.; Darques, M.; Elhoussine, F.; Michotte, S. Magnetic and Superconducting Nanowires. J. Nanosci. Nanotechnol. 2005, 5, 372–389. [Google Scholar] [CrossRef]
- Fusil, S.; Piraux, L.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Michotte, S.; Saul, C.K.; Pereira, L.G.; Bouzehouane, K.; Cros, V.; Deranlot, C.; et al. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires. Nanotechnology 2005, 16, 2936–2940. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Dai, J.Y. Fabrication and magnetic behaviour of superconductor nanowire arrays. Nanotechnology 2004, 15, 1166–1168. [Google Scholar] [CrossRef]
- Brongersma, S.; Pothuizen, J.; Verweij, E.; Koeman, N.; Groot, D.G.; Griessen, R. Multiple maxima in the field dependent magnetisation of superconducting Nb/Cu multilayers. J. Alloys Compd. 1993, 195, 443–446. [Google Scholar] [CrossRef]
- Ziese, M.; Esquinazi, P.; Wagner, P.; Adrian, H.; Brongersma, S.H.; Griessen, R. Matching and surface barrier effects of the flux-line lattice in superconducting films and multilayers. Phys. Rev. B 1996, 53, 8658–8670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Menten de Horne, F.; Piraux, L.; Michotte, S. Electroless template grown superconducting lead and tin nanotubes. Nanotechnology 2009, 20, 385603. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Tian, M.; Bell, L.; Hutchinson, E.; Rosario, M.M.; Liu, Y.; Amma, A.; Mallouk, T. Metallic contacts with individual nanowires prepared by electrochemical deposition and the suppression of superconductivity in ultrasmall grains. Appl. Phys. Lett. 2004, 84, 5171–5173. [Google Scholar] [CrossRef]
- De Haas, W.J.; Voogd, J. On the superconductivity of the gallium. Commun. Phys. Lab. Univ. Leiden 1929, 199d, 733–734. [Google Scholar]
- Roberts, B.W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 1976, 5, 581–821. [Google Scholar] [CrossRef]
- Haruyama, J.; Tokita, A.; Kobyashi, N.; Nomura, M.; Miyadai, S.; Takazama, K.; Takeda, A.; Kanda, Y. End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect. Appl. Phys. Lett. 2004, 84, 4714–4716. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, R.; Awana, V.P.S. DC and AC susceptibility study of sol-gel synthezied Bi2Sr2CaCu2O8+δ superconductor. Ceram. Int. 2013, 39, 1143–1152. [Google Scholar] [CrossRef]
- Deguchi, Y.; Kikuchi, H.; Mori, N.; Yamada, Y.; Atsumi, T.; Yoshida, K.; Ishibashi, T. Fluctuation-conductivity characterization of superconducting Bi2Sr2CaCu2O8+δ thinfilms prepared by the metal-organic decomposition method. Phys. Proc. 2013, 45, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, T.; Qi, Y. Crystalline characteristics and superconducting properties of Bi2212 thin films by Pechini sol-gel method: Effect of heating rate on the film growth. J. Sol-Gel Sci. Technol. 2016, 77, 100–108. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, G. One step preparation of photosensitive Bi2Sr2CaCu2O8+x films and their fine patterns by a photosensitive sol-gel method. Supercond. Sci. Technol. 2018, 31, 125017. [Google Scholar] [CrossRef]
- Dadras, S.; Aawani, E. Fabrication of YBCO nanowires with anodic aluminium oxide (AAO) template. Physica B 2015, 475, 27–31. [Google Scholar] [CrossRef]
- Thomsen, C.; Cardona, M.; Gegenheimer, B.; Liu, R.; Simon, A. Untwinned single crystals of YBa2Cu3O7-δ: An optical investigation of the a-b anisotropy. Phys. Rev. B 1988, 37, 9860. [Google Scholar] [CrossRef] [PubMed]
- Reyntjens, S.; Puers, R. A review of focused-ion beam applications in microsystem technology. J. Micromech. Microeng. 2001, 11, 287–300. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yasuhara, Y.; Miyashita, S.; Komatsu, H. In situ observation of crystallization of YBCO via the peritectic reaction. J. Cryst. Growth 1996, 158, 255–260. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, X.; Zhang, T.; Qu, J.; Wang, W.; Li, X.; Yu, S. Microstructure and superconductivity of highly ordered YBa2Cu3O7-δ nanowire arrays. Nanotechnology 2006, 17, 4252–4256. [Google Scholar] [CrossRef]
- Lai, S.H.; Hsu, Y.C.; Lan, M.D. Synthesis of BSCCO nanowire and its superconductivity. Solid State Commun. 2008, 148, 452–454. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Zeng, X.L.; Hartmann, U. Commercial alumina templates as base to fabricate 123-type high-Tc superconducting nanowires. Phys. Stat. Sol. A 2016, 213, 1069–1076. [Google Scholar] [CrossRef]
- Koblischka, M.R. Growth and characterization of nanowires and –ribbons. In Oxford Handbook of Small Superconductors; Narlikar, A.V., Ed.; Oxford University Press: Oxford, UK, 2017; Chapter 11; pp. 321–346. [Google Scholar]
- Hari Babu, N.; Reddy, E.S.; Shi, Y.; Iida, K.; Withnell, T.D.; Cardwell, D.A. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions. IEEE Trans. Appl. Supercond. 2005, 15, 3090–3093. [Google Scholar] [CrossRef]
- Wolf, T.; Goldacker, W.; Obst, B.; Roth, G.; Flükiger, R. Growth of thick YBa2Cu3O7-x single crystals from Al2O3 crucibles. J. Cryst. Growth 1989, 96, 1010–1018. [Google Scholar] [CrossRef]
- Rørvik, P.M.; Tadanaga, K.; Tatsumisago, M.; Grande, T.; Einarsrud, M.-A. Template-assisted synthesis of PbTiO3 nanotubes. J. Eur. Ceram. Soc. 2009, 29, 2575–2579. [Google Scholar] [CrossRef]
- Welp, U.; Xiao, Z.L.; Jiang, J.S.; Vlasko-Vlasov, V.K.; Bader, S.D.; Crabtree, G.W.; Liang, J.; Chik, H.; Xu, J.M. Superconducting transition and vortex pinning in Nb films patterned with nanoscale hole arrays. Phys. Rev. B 2002, 66, 212507. [Google Scholar] [CrossRef] [Green Version]
- Brandt, E.H. The vortex lattice in conventional and high-Tc superconductors. Baraz. J. Phys. 2002, 32, 675–684. [Google Scholar] [CrossRef]
- Ye, Z.; Naugle, G.D.; Wu, W.; Lyuksyotov, I. Superconducting properties of Pb/Bi films quench-condensed on a porous alumina substrate filled with Co nanowires. J. Supercond. Nov. Magn. 2010, 23, 1083–1085. [Google Scholar] [CrossRef]
- Baek, B.; Rippard, W.H.; Benz, S.P.; Russek, S.E.; Dresselhaus, P.D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 2014, 5, 3888. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xia, Y.N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Li, D.; McCann, J.T.; Xia, Y.N. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 2006, 89, 1861–1869. [Google Scholar] [CrossRef]
- Wu, H.; Pan, W.; Lin, D.; Li, H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J. Adv. Ceram. 2012, 1, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Daristotle, J.L.; Behrens, A.M.; Sandler, A.D.; Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Tao, X.; Shi, L.; Yan, G.; Zhuang, X. Fabrication of ZrO2 ceramic fiber mats by solution blowing process. Ceram. Int. 2014, 40, 15013–15018. [Google Scholar] [CrossRef]
- Karwoth, T. Electronic Transport Measurements on Electrospun High-Tc Fibers. Master’s Thesis, Saarland University, Saarbrücken, Germany, 2016. [Google Scholar]
- Li, J.M.; Zeng, X.L.; Mo, A.D.; Xu, Z.A. Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen. CrystEngComm 2011, 13, 6964–6967. [Google Scholar] [CrossRef]
- Duarte, E.A.; Quintero, P.A.; Meisel, M.W.; Nino, J.C. Electrospinning of superconducting BSCCO nanowires. Physica C 2013, 495, 109–113. [Google Scholar] [CrossRef]
- Duarte, E.A.; Rudawski, N.G.; Quintero, P.A.; Meisel, M.W.; Nino, J.C. Electrospinning of superconducting YBCO nanowires. Supercond. Sci. Technol. 2015, 28, 015006. [Google Scholar] [CrossRef]
- Zeng, X.L.; Koblischka, M.R.; Hartmann, U. Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons. Mater. Res. Express 2015, 2, 095022. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Zeng, X.L.; Karwoth, T.; Hauet, T.; Hartmann, U. Transport and magnetic measurements on Bi-2212 nanowire networks prepared via electrospinning. IEEE Trans. Appl. Supercond. 2016, 26, 1800605. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, M.R.; Zeng, X.L.; Karwoth, T.; Hauet, T.; Hartmann, U. Magnetic properties of electrospun nonwoven superconducting fabrics. AIP Adv. 2016, 6, 035115. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.L.; Koblischka, M.R.; Karwoth, T.; Hauet, T.; Hartmann, U. Preparation of granular Bi-2212 nanowires by electrospinning. Supercond. Sci. Technol. 2017, 30, 035014. [Google Scholar] [CrossRef] [Green Version]
- Cena, C.R.; Torsoni, G.B.; Zadorosny, L.; Malmonge, L.F.; Carvalho, C.L.; Malmonge, J.A. BSCCO superconductor micro/nanofibers produced by solution blow spinning technique. Ceram Int. 2017, 43, 7663–7667. [Google Scholar] [CrossRef] [Green Version]
- Rotta, M.; Zadorosny, L.; Carvalho, C.L.; Malmonge, J.A.; Malmonge, I.F.; Zadorosny, R. YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram. Int. 2016, 42, 16230–16234. [Google Scholar] [CrossRef] [Green Version]
- Rotta, M.; Motta, M.; Pessoa, A.L.; Carvalho, C.L.; Ortiz, W.A.; Zadorosny, R. Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7-x nanowires. J. Mat. Sci. Mater. Electron. 2019, 30, 9045–9050. [Google Scholar] [CrossRef] [Green Version]
- Rotta, M.; Namburi, D.K.; Shi, Y.; Pessoa, A.L.; Carvalho, C.L.; Durrell, J.H.; Cardwell, D.A.; Zadorosny, R. Synthesis of Y2BaCuO5 nano-whiskers by a solution blow spinning technique and their successful introduction into single-grain, YBCO bulk superconductors. Ceram. Int. 2019, 45, 3948–3953. [Google Scholar] [CrossRef]
- Sneddon, G.C.; Trimby, P.W.; Cairney, J.M. Transmission Kikuchi diffraction in a scanning electron microscope: A review. Mater. Sci. Eng. R 2016, 110, 1–12. [Google Scholar] [CrossRef]
- Koblischka-Veneva, A.; Koblischka, M.R.; Zeng, X.L.; Schmauch, J.; Hartmann, U. TEM and electron-backscatter analysis (EBSD) on superconducting nanowires. J. Phys. Conf. Ser. 2018, 1054, 012005. [Google Scholar] [CrossRef]
- Koblischka-Veneva, A.; Koblischka, M.R.; Zeng, X.L.; Schmauch, J. Microstructure analysis of electrospun La0.8Sr0.2MnO3 nanowires using electron microscopy and electron backscatter diffraction. AIP Adv. 2021, 11, 025008. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Wijngaarden, R.J. Magneto-optical investigations of superconductors. Supercond. Sci. Technol. 1995, 8, 199–213. [Google Scholar] [CrossRef]
- Koblischka, M.R. Magnetic Properties of High-Temperature Superconductors; Alpha Science: Oxford, UK, 2009. [Google Scholar]
- Jooss, C.H.; Albrecht, J.; Kuhn, H.; Leonhardt, S.; Kronmüller, H. Magneto-optical studies of current distributions in high-Tc superconductors. Rep. Prog. Phys. 2002, 65, 651–788. [Google Scholar] [CrossRef]
- Sorop, T.G.; Untiedt, C.; Luis, F.; Kröll, M.; Rasa, M.; de Jongh, L.J. Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys. Rev. B 2003, 67, 014402. [Google Scholar] [CrossRef] [Green Version]
- Gross, B.; Weber, D.P.; Rüffer, D.; Buchter, A.; Heimbach, F.; Fontcuberta i Morral, A.; Grundler, D.; Poggio, M. Dynamic cantilever magnetometry of individual CoFeB nanotubes. Phys. Rev. B 2016, 93, 064409. [Google Scholar] [CrossRef] [Green Version]
- Monz, S.; Tschöpe, A.; Birringer, R. Magnetic properties of isotropic and anisotropic CoFe2O4-based ferrogels and their application as torsional and rotational actuators. Phys. Rev. E 2008, 78, 021404. [Google Scholar] [CrossRef]
- Bender, P.; Günther, A.; Honecker, D.; Wiedenmann, A.; Disch, S.; Tschöpe, A.; Michels, A.; Birringer, R. Excitation of Ni nanorod colloids in oscillating magnetic fields: A new approach for nanosensing investigated by TISANE. Nanoscale 2015, 7, 17122–17130. [Google Scholar] [CrossRef] [Green Version]
- Granitzer, P.; Rumpf, K.; Poelt, P.; Reichmann, A.; Hofmayer, M.; Krenn, H. Magnetization of self-organized Ni-nanowires with peculiar magnetic anisotropy. J. Magn. Magn. Mater. 2007, 316, 302–305. [Google Scholar] [CrossRef]
- Granitzer, P.; Rumpf, K.; Koshida, N.; Poelt, P.; Michor, H. Electrodeposited metal nanotube/nanowire arrays in mesoporous silicon and their morphology dependent magnetic properties. ECS Trans. 2014, 58, 139. [Google Scholar] [CrossRef]
- Jung, J.S.; Lim, J.H.; Choi, K.H.; Oh, S.L.; Kim, Y.R.; Lee, S.H.; Smith, D.A.; Stokes, K.L.; Malkinski, L.; O’Connor, C.J. CoFe2O4 nanostructures with high coercivity. J. Appl. Phys. 2005, 97, 10F305. [Google Scholar] [CrossRef]
- Byrne, F.; Prina-Mello, A.; Whelan, A.; Mohamed, B.M.; Davies, A.; Gun’ko, Y.A.; Coey, J.M.D. High content analysis of the biocompatibility of nickel nanowires. J. Magn. Magn. Mater. 2009, 321, 1341–1345. [Google Scholar] [CrossRef]
- Pitzschel, K.; Bachmann, J.; Martens, S.; Montero-Moreno, J.M.; Kimling, J.; Meier, G.; Eschrig, J.; Nielsch, K.; Görlitz, D. Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 2011, 109, 033907. [Google Scholar] [CrossRef]
- Hopkins, D.S.; Pekker, D.; Goldbart, P.M.; Bezryadin, A. Quantum Interference Device Made by DNA Templating of Superconducting Nanowires. Science 2005, 308, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Bezryadin, A.; Goldbart, P.M. Superconducting nanowires fabricated using molecular templates. Adv. Mater. 2010, 22, 1111–1121. [Google Scholar] [CrossRef]
- Hall, S.R. Biomimetic synthesis of high-Tc, type-II superconductor nanowires. Adv. Mater. 2006, 18, 487–490. [Google Scholar] [CrossRef]
- Cirillo, C.; Trezza, M.; Chiarella, F.; Vecchione, A.; Bondarenko, V.P.; Prischepa, S.L.; Attanasio, C. Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates. Appl. Phys. Lett. 2012, 101, 172601. [Google Scholar] [CrossRef] [Green Version]
- Salvato, M.; Baghdadi, R.; Cirillo, C.; Prischepa, S.L.; Dolgiy, A.L.; Bondarenko, V.P.; Lombardi, F.; Attanasio, C. NbN superconducting nanonetwork fabricated using porous silicon templates and high-resolution electron beam lithography. Nanotechnology 2017, 28, 465301. [Google Scholar] [CrossRef] [Green Version]
- Thedford, R.P.; Beaucage, P.A.; Susca, E.M.; Chao, C.A.; Nowack, K.C.; van Dover, R.B.; Gruner, S.M.; Wiesner, U. Superconducting Quantum Metamaterials from High Pressure Melt Infiltration into Block Copolymer Double Gyroid Dervied Ceramic Templates. Adv. Funct. Mater. 2021, 31, 2100469. [Google Scholar] [CrossRef]
- Zhang, B.; Lyu, J.; Rajan, A.; Li, X.; Zhang, X.; Zhang, T.; Dong, Z.; Pan, J.; Liu, Y.; Zhang, J.; et al. Giant enhancement of superconductivity in arrays of ultrathin gallium and zinc sub-nanowires embedded in zeolite. Mater. Today Phys. 2018, 6, 38–44. [Google Scholar] [CrossRef]
- Buh, J.; Kovič, A.; Mrzel, A.; Jagličić, Z.; Jesih, A.; Mihailovic, D. Template synthesis of single-phase δ3-MoN superconducting nanowires. Nanotechnology 2014, 25, 025601. [Google Scholar] [CrossRef] [PubMed]
- Shani, L.; Tinnefeld, P.; Fleger, Y.; Sharoni, A.; Shapiro, B.Y.; Shaulov, A.; Gang, O.; Yeshurun, Y. DNA origami based superconducting nanowires. AIP Adv. 2021, 11, 015130. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Lu, S.-Y. Vapor-solid growth of Sn nanowires: Growth mechanism and Superconductivity. J. Phys. Chem. B 2005, 109, 4398–4403. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Koblischka-Veneva, A. Porous high-Tc superconductors and their applications. AIMS Mater. Sci. 2018, 5, 1199–1213. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Koblischka-Veneva, A. The possible applications of superconducting nanowire networks. Mater. Today Proc. 2020; submitted for publication. [Google Scholar]
- Gokhfeld, D.; Koblischka, M.R.; Koblischka-Veneva, A. Highly porous superconductors: Synethesis, research and prospects. Phys. Metals Metallogr. 2020, 121, 936–948. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koblischka, M.R.; Koblischka-Veneva, A. Fabrication of Superconducting Nanowires Using the Template Method. Nanomaterials 2021, 11, 1970. https://doi.org/10.3390/nano11081970
Koblischka MR, Koblischka-Veneva A. Fabrication of Superconducting Nanowires Using the Template Method. Nanomaterials. 2021; 11(8):1970. https://doi.org/10.3390/nano11081970
Chicago/Turabian StyleKoblischka, Michael Rudolf, and Anjela Koblischka-Veneva. 2021. "Fabrication of Superconducting Nanowires Using the Template Method" Nanomaterials 11, no. 8: 1970. https://doi.org/10.3390/nano11081970
APA StyleKoblischka, M. R., & Koblischka-Veneva, A. (2021). Fabrication of Superconducting Nanowires Using the Template Method. Nanomaterials, 11(8), 1970. https://doi.org/10.3390/nano11081970