Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description
Abstract
:1. Introduction
2. Theoretical Model
3. Absorbance and Extinction Coefficients of MoO3 Thin Films Doped by Resonant NPs
3.1. α-Phase of MoO3 Doped with Ag, Au, and Cu-NPs
3.2. β-Phase of MoO3 Doped with Ag, Au and Cu-NPs
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://ourworldindata.org/ (accessed on 1 August 2021).
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Ji, W.; Allen, T.; Yang, X.; Zeng, G.; de Wolf, S.; Javey, A. Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%. ACS Energy Lett. 2020, 5, 897–902. [Google Scholar] [CrossRef]
- Cao, S.; Yu, D.; Lin, Y.; Zhang, C.; Lu, L.; Yin, M.; Zhu, X.; Chen, X.; Li, D. Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. ACS Appl. Mater. Interfaces 2020, 12, 26184–26192. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tang, J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions. ACS Energy Lett. 2020, 5, 2294–2304. [Google Scholar] [CrossRef]
- Jošt, M.; Kegelmann, L.; Korte, L.; Albrech, S. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Energy Mater. 2020, 10, 1904102. [Google Scholar] [CrossRef]
- Warren, E.L.; McMahon, W.E.; Rienäcker, M.; VanSant, K.T.; Whitehead, R.C.; Peibst, R.; Tamboli, A.C. A Taxonomy for Three-Terminal Tandem Solar Cells. ACS Energy Lett. 2020, 5, 1233–1242. [Google Scholar] [CrossRef]
- Aßmus, M.; Nordmann, J.; Naumenko, K.; Altenbach, H. A Homogeneous Substitute Material for the Core Layer of Photovoltaic Composite Structures. Compos. B Eng. 2017, 112, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Hong, L.; Hou, J. Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Appl. Mater. Interfaces 2020, 12, 38815–38828. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Cushing, S.K.; Wu, N. Plasmon-Enhanced Solar Energy Harvesting, Electrochem. Soc. Interface 2013, 22, 63–67. [Google Scholar] [CrossRef]
- Campos-Gonzalez, E.; Camps, E.; Morales-Luna, M.; Rivera-Rodriguez, C.; Basurto, R. Characterization of MoO3 thin films deposited by laser ablation. Mater. Lett. 2020, 277, 128355. [Google Scholar] [CrossRef]
- De Melo, O.; González, Y.; Climent-Font, A.; Galán, P.; Ruediger, A.; Sánchez, M.; Calvo-Mola, C.; Santana, G.; Torres-Costa, V. Optical and electrical properties of MoO2 and MoO3 thin films prepared from the chemically driven isothermal close space vapor transport technique. J. Phys. Cond. Matter 2019, 31, 295703. [Google Scholar] [CrossRef]
- Cauduro, A.L.F.; Reis, R.d.; Chen, G.; Schmid, A.K.; Methivier, C.; Rubahn, H.-G.; Bossard-Giannesini, L.; Cruguel, H.; Witkowski, N.; Madsen, M. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices. ACS Appl. Mater. Interfaces 2017, 9, 7717–7724. [Google Scholar] [CrossRef] [Green Version]
- Morales-Luna, M.; Arvizu, M.A.; Pérez-González, M.; Tomas, S.A. Effect of a CdSe Layer on the Thermo- and Photochromic Properties of MoO3 Thin Films Deposited by Physical Vapor Deposition. J. Phys. Chem. C 2019, 123, 17083–17091. [Google Scholar] [CrossRef]
- Quevedo-Lopez, M.A.; Ramirez-Bon, R.; Orozco-Teran, R.A.; Mendoza-Gonzalez, O.; Zelaya-Angel, O. Effect of a CdS interlayer in thermochromism and photochromism of MoO3 thin films. Thin Solid Films 1999, 343, 202–205. [Google Scholar] [CrossRef]
- JYao, N.; Loo, B.H. Improved Visible-Light photochromism in Au/MoO3SnO2 thin films. Solid State Commun. 1998, 105, 479–480. [Google Scholar] [CrossRef]
- Arvizu, M.A.; Morales-Luna, M.; Tomás, S.A.; Rodríguez, P.; Zelaya-Angel, O. Photochromism and thermochromism of MoO3 thin films doped with ZnSe. AIP Conf. Proc. 2012, 1420, 151–156. [Google Scholar] [CrossRef]
- Ijeh, R.O.; Nwanya, A.C.; Nkele, A.C.; Madiba, I.G.; Bashir, A.K.H.; Ekwealor, A.B.C.; Osuji, R.U.; Maaza, M.; Ezema, F. Optical, electrical and magnetic properties of copper doped electrodeposited MoO3 thin films. Ceram. Int. 2020, 46, 10820–10828. [Google Scholar] [CrossRef]
- Sajadi, M.; Ranjbar, M.; Rasuli, R. Two-step synthesis of Ag-decorated MoO3 nanotubes, and the effect of hydrogen doping. Appl. Surf. Sci. 2020, 527, 146675. [Google Scholar] [CrossRef]
- Fu, H.; Wu, Z.; Yang, X.; He, P.; An, X.; Xiong, S.; Han, D. Ultra-high sensitivity and selectivity of Au nanoparticles modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 2021, 542, 148721. [Google Scholar] [CrossRef]
- Morales-Luna, G.; Morales-Luna, M. Effective medium theory to the description of plasmonic resonances: Role of Au and Ti nanoparticles embedded in MoO3 thin films. Sci. Rep. 2020, 10, 5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Luna, G.; Herrera-Domínguez, M.; Balderas-Elizalde, A.; Hernandez-Aranda, R.I.; Ornelas-Soto, N. Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive index changes. Opt. Laser Technol. 2020, 131, 106332. [Google Scholar] [CrossRef]
- Reyes-Coronado, A.; Morales-Luna, G.; Vázquez-Estrada, O.; García-Valenzuela, A.; Barrera, R.G. Analytical modeling of optical reflectivity of random plasmonic nano-monolayers. Opt. Express 2018, 26, 12660. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective featured. J. Chem. Phys. 2020, 152, 220901. [Google Scholar] [CrossRef]
- Cheng, C.; Gustavsen, K.R.; Wang, K. Plasmon-induced visible light absorption arising from edge-interfaces of titanium-oxides nanocomposites. Opt. Mater. 2021, 113, 110847. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Meng, F.; Senty, T.R.; Bristow, A.D.; Wu, N. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607. [Google Scholar] [CrossRef]
- Seemala, B.; Therrien, A.J.; Lou, M.; Li, K.; Finzel, J.P.; Qi, J.; Nordlander, P.; Christopher, P. Plasmon-Mediated Catalytic O2 Dissociation on Ag Nanostructures: Hot Electrons or Near Fields? ACS Energy Lett. 2019, 4, 1803–1809. [Google Scholar] [CrossRef]
- Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; et al. Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency. Adv. Mater. 2019, 31, 1903441. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.-D.; Che, X.; Qu, Y.; Liu, F.; Liao, L.-S.; Forrest, S.R. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. J. Am. Chem. Soc. 2017, 139, 17114–17119. [Google Scholar] [CrossRef]
- Debbichi, L.; Lee, S.; Cho, H.; Rappe, A.M.; Hong, K.-H.; Jang, M.S.; Kim, H. Mixed Valence Perovskite Cs2Au2I6: A Potential Material for Thin-Film Pb-Free Photovoltaic Cells with Ultrahigh Efficiency. Adv. Mater. 2018, 30, 1707001. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, C.-I.; Liao, Y.-T.; Wu, K.C.-W.; Chueh, C.-C. Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures. Adv. Sci. 2019, 6, 1801715. [Google Scholar] [CrossRef]
- Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. J. Phys. Chem. C 2007, 111, 3806–3819. [Google Scholar] [CrossRef]
- Chen, H.; Blaber, M.G.; Standridge, S.D.; DeMarco, E.J.; Hupp, J.T.; Ratner, M.A.; Schatz, G.C. Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell. J. Phys. Chem. C 2012, 116, 10215–10221. [Google Scholar] [CrossRef]
- Hegde, S.S.; Kunjomana, A.G.; Murahari, P.; Prasad, B.K.; Ramesh, K. Vacuum annealed tin sulfide (SnS) thin films for solar cell applications. Surf. Interfaces 2018, 10, 78–84. [Google Scholar] [CrossRef]
- Van de Hulst, H.C. Light Scattering by Small Particles; Section 4.2–4.3; Dover Publications, Inc.: Mineola, NY, USA, 1957; Chapter 4; pp. 30–34. [Google Scholar]
- Morales-Luna, G.; García-Valenzuela, A. Viability and fundamental limits of critical-angle refractometry of turbid colloids. Meas. Sci. Technol. 2017, 28, 12. [Google Scholar] [CrossRef] [Green Version]
- Morales-Luna, G.; García-Valenzuela, A. Optical sizing of nanoparticles in thin films of nonabsorbing nanocolloids. Appl. Opt. 2019, 58, 5989. [Google Scholar] [CrossRef] [PubMed]
- Garnett, J.M. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions–II. Philos. Trans. R. Soc. Lond. 1906, 205, 237–288. [Google Scholar] [CrossRef]
- Morales-Luna, G.; Contreras-Tello, H.; García-Valenzuela, A.; Barrera, R.G. Experimental test of reflectivity formulas for turbid colloids: Beyond the Fresnel reflection amplitudes. J. Phys. Chem. B 2016, 120, 583–595. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1999; pp. 841–842. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Section 4.4.4; Wiley-Interscience: Hoboken, NJ, USA, 1983; Chapters 3–4; pp. 57–77, 111–112. [Google Scholar]
- Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141. [Google Scholar] [CrossRef] [Green Version]
- Astinchap, B.; Laelabadi, K.G. Effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films. J. Phys. Chem. Solids 2019, 129, 217–226. [Google Scholar] [CrossRef]
- Ortiz, G.P.; Mochán, W.L. Nonadditivity of Pointing vector within opaque media. J. Opt. Soc. Am. A 2005, 22, 2827–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshia, D.N.; Ilaiyarajab, P.; Sudakarb, C.; Prasath, R.A. Facile one-pot synthesis of multi-shaped silver nanoparticles with tunable ultra-broadband absorption for efficient light harvesting in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2018, 185, 104–110. [Google Scholar] [CrossRef]
- Baruah, P.K.; Sharma, A.K.; Khare, A. Effective control of particle size, surface plasmon resonance and stoichiometry of Cu@CuxO nanoparticles synthesized by laser ablation of Cu in distilled water. Opt. Laser Technol. 2018, 108, 574–582. [Google Scholar] [CrossRef]
- Ye, W.; Long, R.; Huang, H.; Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008–1021. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C.B. Using Binary Surfactant Mixtures to Simultaneously Improve Dimensional Tunability and Monodispersity in the Seeded-Growth of Gold Nanorods. Nano Lett. 2013, 13, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. [Google Scholar] [CrossRef]
Resonant Peak Redshift [nm] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
α-Phase Radii NPs | β-Phase Radii NPs | ||||||||||
Nanoparticle | f (%) | 5 | 10 | 15 | 20 | ΔSPR-α | 5 | 10 | 15 | 20 | ΔSPR-β |
Ag | 1 | 535 | 545 | 559 | 580 | 45 | 597 | 610 | 630 | 653 | 56 |
3 | 532 | 542 | 556 | 576 | 44 | 594 | 606 | 626 | 650 | 56 | |
5 | 531 | 541 | 554 | 574 | 43 | 593 | 605 | 624 | 647 | 54 | |
Au | 1 | 597 | 603 | 611 | 624 | 27 | 642 | 651 | 664 | 681 | 39 |
3 | 596 | 601 | 609 | 622 | 26 | 640 | 648 | 661 | 678 | 38 | |
5 | 594 | 600 | 608 | 620 | 26 | 639 | 648 | 660 | 676 | 37 | |
Cu | 1 | 600 | 605 | 613 | 626 | 26 | 642 | 650 | 663 | 679 | 37 |
3 | 598 | 604 | 612 | 625 | 27 | 640 | 648 | 661 | 677 | 37 | |
5 | 597 | 602 | 610 | 623 | 26 | 639 | 647 | 659 | 675 | 36 |
Full Width at Half Maximum (FWHM) [nm] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
α-Phase Radii NPs | β-Phase Radii NPs | ||||||||||
Nanoparticle | f (%) | 5 | 10 | 15 | 20 | ΔFWHM-α | 5 | 10 | 15 | 20 | ΔFWHM-β |
Ag | 1 | 37.12 | 40.44 | 50.8 | 65.81 | 28.69 | 43.19 | 51.23 | 66.15 | 88.96 | 45.77 |
3 | 41.94 | 44.89 | 56.55 | 72.14 | 30.20 | 47.68 | 54.14 | 68.52 | 89.92 | 42.24 | |
5 | 46.92 | 49.44 | 61.13 | 77.85 | 30.93 | 53.52 | 59.62 | 72.99 | 94.15 | 40.63 | |
Au | 1 | 38.92 | 38.78 | 42.94 | 51.51 | 12.59 | 37.38 | 38.57 | 45.26 | 61.09 | 23.71 |
3 | 42.57 | 42.65 | 46.92 | 56.77 | 14.20 | 40.33 | 42.21 | 48.68 | 64.09 | 23.76 | |
5 | 45.61 | 45.86 | 49.89 | 60.37 | 14.76 | 43.96 | 46.26 | 52.98 | 67.97 | 24.01 | |
Cu | 1 | 61.62 | 60.57 | 62.2 | 66.81 | 5.19 | 58.52 | 59.07 | 63.83 | 75.6 | 17.08 |
3 | 64.52 | 63.99 | 66.1 | 71.56 | 7.04 | 57.57 | 58.5 | 63.61 | 74.49 | 16.92 | |
5 | 67.11 | 66.88 | 69.15 | 75.31 | 8.20 | 60.01 | 61.16 | 66.52 | 77.73 | 17.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Luna, G.; Morales-Luna, M. Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description. Nanomaterials 2021, 11, 2050. https://doi.org/10.3390/nano11082050
Morales-Luna G, Morales-Luna M. Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description. Nanomaterials. 2021; 11(8):2050. https://doi.org/10.3390/nano11082050
Chicago/Turabian StyleMorales-Luna, Gesuri, and Michael Morales-Luna. 2021. "Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description" Nanomaterials 11, no. 8: 2050. https://doi.org/10.3390/nano11082050
APA StyleMorales-Luna, G., & Morales-Luna, M. (2021). Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description. Nanomaterials, 11(8), 2050. https://doi.org/10.3390/nano11082050