Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. CH-CB Membrane Fabrication and Enzyme Immobilization
2.3. Characterization Methods
3. Results
3.1. Fabrication and Characterization of Flexible Chitosan-CB Membranes
3.2. Characterization of CH-CB Membranes
3.3. Enzyme Attachment in CH-CB Membrane Characterization
3.4. Bioelectrodes: Cathode and Anode Enzyme Activity Evaluation
3.5. Applicability to Wearable Technologies: Glucose Biosensing and Energy Harvesting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in medicine. Adv. Mater. 2018, 30, 1706910. [Google Scholar] [CrossRef]
- Buaki-Sogó, M.; García-Carmona, L.; Gil-Agustí, M.; Zubizarreta, L.; García-Pellicer, M.; Quijano-López, A. Enzymatic glucose-based bio-batteries: Bioenergy to fuel next-generation devices. Top. Curr. Chem. 2020, 378, 1–28. [Google Scholar] [CrossRef]
- Ramesh, M.; Balakrishnan, P.; Dhanaprabhu, S.S.; Ravanan, A.; Maniraj, J. Enzyme-modified electrodes for biofuel cells: A comprehensive review. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Yin, L.; Lv, J.; Wang, J. Structural innovations in printed, flexible, and stretchable electronics. Adv. Mater. Technol. 2020, 5, 2000694. [Google Scholar] [CrossRef]
- Diaz, A.F.; Castillo, J.I.; Logan, J.A.; Lee, W.Y. Electrochemistry of conductive polypyrrole films. J. Electroanal. Chem. 1981, 129, 115. [Google Scholar] [CrossRef]
- Tomczykowa, M.; Plonska-Brzezinska, M.E. Conducting polymers, hydrogels and their composites: Preparation, properties and bioapplications. Polym. J. 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, T.; Mir, I.A.; Kumar, D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791–805. [Google Scholar] [CrossRef]
- Cabaj, J.; Soloducho, J. Conducting polymers as elements of miniature biocompatible sensor. In Green Electronics; BoD—Books on Demand: London, UK, 2018. [Google Scholar]
- Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr. Polym. 2013, 92, 1783–1791. [Google Scholar] [CrossRef]
- Kunz, K.; Krause, B.; Kretzschmar, B.; Juhasz, L.; Kobsch, O.; Jenschke, W.; Ullrich, M.; Pötschke, P. Direction dependent electrical conductivity of polymer/carbon filler composites. Polym. J. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Dehghani-Sanij, A.; Blackburn, R. Carbon based conductive polymer composites. J. Mater. Sci. 2007, 42, 3408–3418. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, H.; Liu, M. High performance strain sensors based on chitosan/carbon black composite sponges. Mater. Des. 2018, 141, 276–285. [Google Scholar] [CrossRef]
- Aydin, E.B.; Aydin, M.; Sezgintürk, M.K. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens. Bioelectron. 2018, 121, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.M.; Eng, G.; Caridade, S.G.; Mano, J.F.; Reis, R.L.; Vunjak-Novakovic, G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 2014, 15, 635−643. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cinti, S.; Mazzaracchio, V.; Scognamiglio, V.; Amine, A.; Moscone, D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens. Bioelectron. 2020, 156, 112033. [Google Scholar] [CrossRef]
- Hwang, J.; Muth, J.; Ghosh, T. Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J. Appl. Polym. Sci. 2007, 104, 2410–2417. [Google Scholar] [CrossRef]
- Charlier, N.; Beghein, N.; Gallez, B. Development and evaluation of biocompatible inks for the local measurement of oxygen using in vivo EPR. NMR Biomed. 2004, 17, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, K.; Lee, M.-Y. Biocompatible dispersión methods of carbon black. Toxicol. Res. 2012, 28, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Pajnič, M.; Drašler, B.; Šuštar, V.; Krek, J.L.; Štukelj, R.; Šimundić, M.; Kononenko, V.; Makovec, D.; Hägerstrand, H.; Drobne, D.; et al. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. J. Nanobiotechnol. 2015, 13, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Yang, K.; Zhang, Y.; Tang, H.; Yan, F.; Tan, L.; Yao, S. Highly biocompatible multi-walled carbon nanotube–chitosan nanoparticle hybrids as protein carriers. Acta Biomater. 2011, 7, 3070–3077. [Google Scholar] [CrossRef]
- Aoki, K.; Saito, N. Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials 2020, 10, 264. [Google Scholar] [CrossRef]
- Hara, K.; Aoki, K.; Usui, Y.; Shimizu, M.; Narita, N.; Ogihara, N.; Saito, N. Evaluation of CNT toxicity by comparison to tattoo ink. Mater. Today 2011, 14, 434–440. [Google Scholar] [CrossRef]
- Croisier, F.; Jerôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-J.; Zhang, Z.-H.; Cai, R.; Kong, X.-Q.; Chen, X.; Liu, Y.-N.; Yao, S.-Z. Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol A detection. Analyst 2013, 138, 2769–2776. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, B.; Campidelli, S.; de la Torre, G.; Ehli, C.; Guldi, D.M.; Prato, M.; Torres, T. Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chem. Commun. 2007, 28, 2950–2952. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.W.; Zhang, Z.H.; Jiang, Y.Q. Imprinted electrochemical sensor based on cobalt nanoparticles/graphene modified carbon electrode for sensitive determination of p-(Tert-octyl)phenol. Chin. J. Anal. Chem. 2015, 43, 1716–1721. [Google Scholar]
- Yang, X.; Zhang, F.; Hu, Y.; Chen, D.; He, Z.; Xiong, L. Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice. Int. J. Electrochem. Sci. 2014, 9, 5061–5072. [Google Scholar]
- Sayyar, S.; Murray, E.; Thompson, B.C.; Chung, J.; Officer, D.L.; Gambhir, S.; Spinksa, G.M.; Wallace, G. Processable conducting graphene/chitosan hydrogels for tissue engineering. J. Mater. Chem. B 2015, 3, 481. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Cooney, M.J.; Atanassov, P. Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 2008, 24, 7004–7010. [Google Scholar] [CrossRef]
- Marroquin, J.; Kim, H.J.; Jung, D.-H.; Rhee, K.Y. Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films. Carbon Lett. 2012, 13, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bai, H.; Yao, Z.; Liu, A.; Shi, G. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 2010, 20, 9032–9036. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Blackford, A.C.; Wegst, U.G.K.; Schauer, C.L. Carbon black immobilized in electrospun chitosan membranes. Carbohydr. Polym. 2011, 84, 1252–1257. [Google Scholar] [CrossRef]
- Song, X.; Mei, J.; Ye, G.; Wang, L.; Ananth, A.; Yu, L.; Qiu, X. In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl. Mater. Today 2019, 15, 87–99. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar] [CrossRef]
- Ghica, M.E.; Pauliukaite, R.; Fatibello-Filho, O.; Brett, C.M. Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sens. Actuators B. Chem. 2009, 142, 308–315. [Google Scholar] [CrossRef]
- Gutierrez-Sanchez, C.; Shleev, S.; De Lacey, A.L.; Pita, M. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem. Pap. 2015, 69, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Vaz-Dominguez, C.; Campuzano, S.; Rüdiger, O.; Pita, M.; Gorbacheva, M.; Shleev, S.; Fernandez, V.M.; de Lacey, A.L. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens. Bioelectron. 2008, 24, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Sánchez, C.; Jia, W.; Beyl, Y.; Pita, M.; Schuhmann, W.; de Lacey, A.L.; Stoica, L. Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim. Acta. 2012, 82, 218–223. [Google Scholar]
- Thoughtco. Available online: https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499 (accessed on 5 May 2021).
- Kim, J.; Yoo, K.-H. Glucose oxidase nanotube-based enzymatic biofuel cells with improved laccase biocathodes. Phys. Chem. Chem. Phys. 2013, 15, 3510–3517. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.S.; Jose, M.V.; Marx, S.; Cornelius, S.; Koepsel, R.R.; Islam, M.F.; Russell, A.J. Improved power density of an enzymatic biofuel cell with fibrous supports of high curvature. RSC Adv. 2016, 6, 10150–10158. [Google Scholar] [CrossRef]
- Kuis, R.; Hasan, M.Q.; Baingane, A.; Slaughter, G. Comparison of chitosan and nafion-chitosan coated bioelectrodes in enzymatic glucose biofuel cells. In Proceedings of the 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS), San Diego, CA, USA, 27–30 September 2020; pp. 416–419. [Google Scholar]
- Yang, J.H.; Kim, H.R.; Lee, J.H.; Jin, J.H.; Lee, H.U.; Kim, S.W. Electrochemical properties of enzyme electrodecovalently immobilized on a graphite oxide/cobalthydroxide/chitosan composite mediator for biofuelcells. Int. J. Hydrogen Energy 2021, 46, 3251–3258. [Google Scholar] [CrossRef]
- Duong, N.B.; Wang, C.-L.; Huang, L.Z.; Fang, W.T.; Yang, H. Development of a facile and low-cost chitosan-modified carbon cloth for efficient self-pumping enzymatic biofuel cells. J. Power Sources 2019, 429, 111–119. [Google Scholar] [CrossRef]
- Saleh, F.S.; Mao, L.; Ohsaka, T. Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell. Sens. Actuators B Chem. 2011, 152, 130–135. [Google Scholar] [CrossRef]
- Wei, W.; Li, P.; Li, Y.; Cao, X.; Liu, S. Nitrogen-doped carbon nanotubes enhanced laccase enzymatic reactivity towards oxygen reduction and its application in biofuel cell. Electrochem. Commun. 2012, 22, 181–184. [Google Scholar] [CrossRef]
- Kang, Z.; Jiao, K.; Cheng, J.; Peng, R.; Jiao, S.; Hu, Z. A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell. Biosens. Bioelectron. 2018, 101, 60–65. [Google Scholar] [CrossRef]
- Cooney, M.J.; Lau, C.; Windmeisser, M.; Liaw, B.Y.; Klotzbach, T.; Minteer, S.D. Design of chitosan gel pore structure: Towards enzyme catalyzed flow-through electrodes. J. Mater. Chem. 2008, 18, 667–674. [Google Scholar] [CrossRef]
- Zheng, M.; Griveau, S.; Dupont-Gillain, C.; Genet, M.J.; Jolivalt, C. Oxidation of laccase for improved cathode biofuel cell performances. Bioelectrochemistry 2015, 106, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Reuillard, B.; Abreu, C.; Lalaoui, N.; Le Goff, A.; Holzinger, M.; Ondel, O.; Buret, F.; Cosnier, S. One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 2015, 106, 73–76. [Google Scholar] [CrossRef]
- Hu, Z.; Kang, Z.; Yu, C.; Wang, B.; Jiao, S.; Peng, R. Direct electron transfer of glucose oxidase in carbon paper for biofuel cells and biosensors. Int. J. Electrochem. Sci. 2017, 12, 7103–7120. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Yuan, W.; Marcellin-Little, D.; Harrysson, O. Immobilization of glucose oxidase on mesoporous carbon for bio-electrodes. Trans. ASABE 2017, 60, 1431–1436. [Google Scholar] [CrossRef]
- Guo, C.X.; Li, C.M. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite. Phys. Chem. Chem. Phys. 2010, 12, 12153–12159. [Google Scholar] [CrossRef]
CB w/w% | Thickness (µm) | ρ (Ω·sq−1) | Resistivity (Ω·cm) | Conductivity (S·cm−1) |
---|---|---|---|---|
25 | 26.3 ± 1.4 | 2100 ± 300 | 5.5 ± 0.7 | 0.18 ± 0.02 |
75 | 41 ± 2 | 51 ± 3 | 0.21 ± 0.01 | 4.7 ± 0.3 |
100 | 39.8 ± 1.0 | 37.4 ± 1.4 | 0.16 ± 0.01 | 6.4 ± 0.3 |
200 | 63.7 ± 1.3 | 19 ± 2 | 0.12 ± 0.02 | 8.5 ± 1.2 |
Amorphous carbon | - | - | 0.05 − 0.08 | 20 |
Graphite | - | - | 0.3 | 3.3 |
Bioelectrode Support Composition | Conductivity (S·cm−1) | Application | References | |
---|---|---|---|---|
Sensing (LOD, µM) | Energy Harvesting (Power Density, µW/cm2 and OCV, V) | |||
CH-CB-ITO | - | Tumor suppressor protein sensor (p53) | - | [15] |
CH-RGO | 0.01 | - | - | [33] |
CH-MWCNT | - | 26 | - | [37] |
CH-CB-sponges | 0.01 | Strain sensor | - | [14] |
PPY-CNT | - | - | 1200/0.60 | [42] |
Au-GR-SWCNT | - | - | 3.56/0.20 | [43] |
BP-MWCNT-CH-Nf | - | - | 1600/0.60 | [44] |
Au-GRP-Co-CH | - | - | 2200/0.60 | [45] |
CC-CH-TPP | - | - | 1500/0.46 | [46] |
GCE-MWCNT-Mediator | - | 0.30 | 32/0.35 | [47] |
GCH-NCNT | - | 48 | 21/05 | [48] |
PANI-CNT-GCE | - | 70 | 1120/0.78 | [49] |
GCE-CH | - | - | 13/0.62 | [50] |
CH-CB-membrane | 6.40 | 76 | 21.3/0.35 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buaki-Sogó, M.; García-Carmona, L.; Gil-Agustí, M.; García-Pellicer, M.; Quijano-López, A. Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials 2021, 11, 2052. https://doi.org/10.3390/nano11082052
Buaki-Sogó M, García-Carmona L, Gil-Agustí M, García-Pellicer M, Quijano-López A. Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials. 2021; 11(8):2052. https://doi.org/10.3390/nano11082052
Chicago/Turabian StyleBuaki-Sogó, Mireia, Laura García-Carmona, Mayte Gil-Agustí, Marta García-Pellicer, and Alfredo Quijano-López. 2021. "Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes" Nanomaterials 11, no. 8: 2052. https://doi.org/10.3390/nano11082052
APA StyleBuaki-Sogó, M., García-Carmona, L., Gil-Agustí, M., García-Pellicer, M., & Quijano-López, A. (2021). Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials, 11(8), 2052. https://doi.org/10.3390/nano11082052