Measurement of Nanometre-Scale Gate Oxide Thicknesses by Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope Combined with Monte Carlo Simulations
Abstract
:1. Introduction and Scope
- (i)
- dielectric measurements based on capacitance-voltage profiling [6] or ellipsometry [7] which are quick and easy to use. They provide average values of oxide thicknesses integrated over large surface areas and can be used for routine quality control, assuming the dielectric function of the gate oxide is precisely known;
- (ii)
- (iii)
- destructive analysis in cross-section by e.g., depth profiling techniques based on secondary ion mass spectroscopy (SIMS) [11,12,13] or scanning Auger electron spectroscopy [4,14] at nm-scale resolution, or (scanning) transmission electron microscopy (TEM/STEM) that can provide lattice resolution [4,15,16] and chemical analysis at near-atomic resolution [17]. These techniques are slow, expensive and destroy the sample at the point of analysis so they are unsuitable for mass inspection, but they provide the possibility to study specific sites.
2. Monte Carlo Simulations of X-ray Generation and Detection in a Scanning Electron Microscope (SEM)
- (i)
- The predicted O/Si ratio scales almost linearly with SiO2 layer thickness so that a measurement at a single acceleration voltage would be sufficient to deduce the SiO2 thickness if all detector properties (entrance window, top contact and total thickness, all of which determine the detection efficiency) as well as the take-off angle were correctly modelled and if there were absolutely no surface contamination.
- (ii)
- At very low acceleration voltage, the O/Si ratio could be high because both the penetration of the electron beam would be low, picking up a lot of the signal from the oxide layer, but the excitation of the Si K signal would be weak because the electron energy would be only very slightly above the corresponding ionisation threshold. Again, surface contamination will change this somewhat (see discussion later at the end of Section 2 and Section 3).
- (iii)
- For increasing acceleration voltage, the electron beam penetrates further into the sample and picks up more signal from the Si substrate compared to the thin SiO2 surface layer, the predicted O/Si ratio decreasing exponentially with energy. As a result, the sensitivity of the signal to the surface would be too low in an experiment at maximum operation voltage to give sufficient count rates from the O K-line to allow for meaningful quantification.
3. Energy-Dispersive X-ray Spectroscopy Measurements in SEM Using Method A
4. Conclusions
Funding
Conflicts of Interest
References
- Kittl, J.A.; Opsomer, K.; Popovici, M.; Menou, N.; Kaczer, B.; Wang, X.P.; Adelmann, C.; Pawlak, M.A.; Tomida, K.; Rothschild, A.; et al. High-k dielectrics for future generation memory devices. Microelectron. Eng. 2009, 86, 1789–1795. [Google Scholar] [CrossRef]
- Yu, Z.; Ramdani, J.; Curless, J.A.; Overgaard, C.D.; Finder, J.M.; Droopad, R.; Eisenbeiser, K.W.; Hallmark, J.A.; Ooms, W.J.; Kaushik, V.S. Epitaxial oxide thin films on Si(001). J. Vac. Sci. Technol. B 2000, 18, 2139–2145. [Google Scholar] [CrossRef]
- Foran, B.; Barnett, J.; Lysaght, P.S.; Agustin, M.P.; Stemmer, S. Characterization of advanced gate stacks for Si CMOS by electron energy-loss spectroscopy in scanning transmission electron microscopy. J. Electron Spectrosc. Rel Phenom. 2005, 143, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Renault, O.; Samour, D.; Rouchon, D.; Holliger, P.; Papon, A.-M.; Blin, D.; Marthon, S. Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si. Thin Solid Film. 2003, 428, 190–194. [Google Scholar] [CrossRef]
- Norris, D.J.; Walther, T.; Cullis, A.G.; Myronov, M.; Dobbie, A.; Whall, T.; Parker, E.H.C.; Leadley, D.R.; De Jaeger, B.; Lee, W.; et al. TEM analysis of Ge-on-Si MOSFET structures with HfO2 dielectric for high performance PMOS device technology. In Proceedings of the 16th International Conference on Microscopy of Semiconducting Materials, University of Oxford, Oxford, UK, 17–20 March 2009; Volume 209, p. 012061. [Google Scholar]
- Hung, K.K.; Cheng, C. Characterization of metal-oxide-semiconductor transistors with very thin gate oxide. J. Appl. Phys. 1985, 59, 816–823. [Google Scholar] [CrossRef]
- Diebold, A.C.; Doris, B. A survey of nondestructive surface characterization methods used to insure reliable gate oxide fabrication for silicon IC devices. Surf. Interf. Anal. 1993, 20, 127–139. [Google Scholar] [CrossRef]
- Bell, F.H.; Joubert, O. Polysilicon gate etching in high density plasmas. IV. Comparison of photoresist and oxide masked polysilicon etching—Thickness determination of gate oxide layers using x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. B 1996, 14, 3473–3482. [Google Scholar] [CrossRef]
- Gusev, E.P.; Lu, H.C.; Gustafsson, T.; Garfunkel, E.; Green, M.L.; Brasen, D. The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide. J. Appl. Phys. 1997, 82, 896–898. [Google Scholar] [CrossRef]
- Alers, G.B.; Werder, D.J.; Chabal, Y.; Lu, H.C.; Gusev, E.P.; Garfunkel, E.; Gustafsson, T.; Urdahl, R.S. Intermixing at the tantalum oxide / silicon interface in gate dielectric structures. Appl. Phys. Lett. 1998, 73, 1517–1519. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Hwu, J.-G. Improvement in radiation hardness of gate oxides in metal-oxide semiconductor devices by repeated thermal oxidation in N2O. Appl. Phys. Lett. 1994, 64, 3136–3138. [Google Scholar] [CrossRef]
- Yeo, K.L.; Wee, A.T.S.; Liu, R.; Zhou, F.F.; See, A. Investigation of boron penetration through decoupled plasma nitride gate oxide using backside secondary ion mass spectrometry depth profiling. J. Vac. Sci. Technol. B 2003, 21, 193–197. [Google Scholar] [CrossRef]
- Ganem, J.-J.; Trimaille, I.; Vickridge, I.C.; Blin, D.; Martin, F. Study of thin hafnium oxides deposited by atomic layer deposition. Nucl. Instrum. Meth. Phys. Res. B 2004, 219, 856–861. [Google Scholar] [CrossRef]
- Debenest, P.; Barla, K.; Straboni, A.; Vuillermoz, B. Plasma nitrided oxide films as a thin gate dielectric. Appl. Surf. Sci. 1989, 36, 196–204. [Google Scholar] [CrossRef]
- Gusev, E.P.; Copel, M.; Cartier, E.; Baumvol, I.J.R.; Krug, C.; Gribelyuk, M.A. High-resolution depth profiling in ultrathin Al2O3 films on Si. Appl. Phys. Lett. 2000, 76, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Callegari, E.; Cartier, E.; Gribelyuk, M.; Okorn-Schmidt, H.F.; Zabel, T. Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films. J. Appl. Phys. 2001, 90, 6466–6475. [Google Scholar] [CrossRef]
- Muller, D.A.; Sorsch, T.; Moccio, S.; Baumann, F.H.; Evans-Lutterodt, K.; Timp, G. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 1999, 399, 758–761. [Google Scholar] [CrossRef]
- Seah, M.P.; Spencer, S.J.; Bensebaa, F.; Vickridge, I.; Danzebrink, H.; Krumrey, M.; Gross, T.; Oesterle, W.; Wendler, E.; Rheinländer, B.; et al. Critical review of the current status of thickness measurements for ultrathin SiO2 on Si, Part V: Results of a CCQM pilot study. Surf. Interface Anal. 2004, 36, 1269–1303. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. Surface film X-ray microanalysis. Scanning 1990, 12, 212–224. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. Electron probe X-ray microanalysis applied to thin surface films and stratified specimens. Scanning Microsc. 1993, 1993, 167–189. [Google Scholar]
- Möller, A.; Weinbruch, S.; Stadermann, F.J.; Ortner, H.M.; Balogh, A.G.; Hahn, H. Accuracy of film thickness determination in electron probe microanalysis. Mikrochim. Acta 1995, 119, 41–47. [Google Scholar] [CrossRef]
- Matthews, M.B.; Buse, B.; Kearns, S.L. Electron probe microanalysis through coated oxidized surfaces. Microsc. Microanal. 2019, 25, 1112–1129. [Google Scholar] [CrossRef] [PubMed]
- Staub, P.F. The low energy X-ray spectrometry techniques as applied to semiconductors. Microsc. Microanal. 2006, 12, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Joy, D.C. Monte Carlo Modeling for Electron Microscopy and Microanalysis; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A fast and easy-to-use modeling tool for Scanning Electron Microscopy and microanalysis users. Scanning 2007, 29, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Walther, T. An improved approach to quantitative X-ray microanalysis in (S)TEM: Thickness dependent k-factors. In Proceedings of the Electron Microscopy and Analysis Group Conference 2009 (EMAG 2009), University of Sheffield, Sheffield, UK, 8–11 September 2009; Volume 241, p. 012016. [Google Scholar]
- Walther, T.; Wang, X. Self-consistent absorption correction for quantitative energy-dispersive X-ray spectroscopy of InGaN layers in analytical transmission electron microscopy. In Proceedings of the Electron Microscopy and Analysis Group Conference (EMAG2015), Manchester, UK, 29 June–2 July 2015; 2015; Volume 644, p. 012006. [Google Scholar]
- Walther, T.; Mader, W. Application of spatially resolved electron energy-loss spectroscopy to the quantitative analysis of semiconducting layer structures. Inst. Phys. Conf. Ser. 1999, 164, 121–128. [Google Scholar]
- Walther, T.; Humphreys, C.J. Quantification of the composition of silicon germanium/silicon structures by high-angle annular dark field imaging. In Proceedings of the Electron Microscopy and Analysis Group Conference 1997 (EMAG97), Cambridge, UK, 2–5 September 1997; 1997; Volume 153, pp. 303–306. [Google Scholar]
- Griffiths, A.J.V.; Walther, T. Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning. In Proceedings of the Electron Microscopy and Analysis Group Conference 2009 (EMAG 2009), University of Sheffield, Sheffield, UK, 8–11 September 2009; Volume 241, p. 012017. [Google Scholar]
Specimen | C K Counts | O K Counts | Si K Counts | O/Si Ratio | (O–bg)/Si Ratio |
---|---|---|---|---|---|
Si epitaxial | 639 | 581 | 184,770 | 0.003144 | 0.002706 |
Si polished | 398 | 134 | 188,290 | 0.000712 | 0.000281 |
SiGe/Si | 586 | 244 | 165,749 | 0.001472 | 0.000983 |
SiO2 Spectrosil B | 537 | 20,036 | 82,121 | 0.243981 | 0.242995 |
graphite | 42,290 | 75 | - | - | - |
platinum | 382 | 87 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walther, T. Measurement of Nanometre-Scale Gate Oxide Thicknesses by Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope Combined with Monte Carlo Simulations. Nanomaterials 2021, 11, 2117. https://doi.org/10.3390/nano11082117
Walther T. Measurement of Nanometre-Scale Gate Oxide Thicknesses by Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope Combined with Monte Carlo Simulations. Nanomaterials. 2021; 11(8):2117. https://doi.org/10.3390/nano11082117
Chicago/Turabian StyleWalther, Thomas. 2021. "Measurement of Nanometre-Scale Gate Oxide Thicknesses by Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope Combined with Monte Carlo Simulations" Nanomaterials 11, no. 8: 2117. https://doi.org/10.3390/nano11082117
APA StyleWalther, T. (2021). Measurement of Nanometre-Scale Gate Oxide Thicknesses by Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope Combined with Monte Carlo Simulations. Nanomaterials, 11(8), 2117. https://doi.org/10.3390/nano11082117