Characteristic Variabilities of Subnanometer EOT La2O3 Gate Dielectric Film of Nano CMOS Devices
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Effects of Thermal Annealing on Interface Structure and Capacitance Value
3.2. Interface Roughness Effects
3.3. Leakage Current Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Iwai, H.; Sze, S.M.; Taur, Y.; Wong, H.; MOSFETs. Guide to State-of-the-Art Electron Devices; Burghartz, J.N., Ed.; John Wiley & Sons: Chichester, UK, 2013; pp. 21–36. [Google Scholar]
- Wong, H.; Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 2015, 138, 57–76. [Google Scholar] [CrossRef]
- Wong, H. Nano CMOS Gate Dielectric Engineering; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Markov, S.; Roy, S.; Asenov, A. Direct tunnelling gate leakage variability in nano-CMOS transistors. IEEE Trans. Electron Devices 2010, 57, 3106–3114. [Google Scholar] [CrossRef]
- Lee, J.; Asenov, P.; Aldegunde, M.; Amoroso, S.M.; Brown, A.R.; Moroz, V. A worst-case analysis of trap-assisted tunneling leakage in DRAM using a machine learning approach. IEEE Electron Device Lett. 2021, 42, 156–159. [Google Scholar] [CrossRef]
- Zhao, Y.; Toyama, M.; Kita, K.; Kyuno, K.; Toriumi, A. Moisture-absorption-induced permittivity deterioration and surface roughness enhancement of lanthanum oxide films on silicon. Appl. Phys. Lett. 2006, 88, 072904. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. Design of higher-k and more stable rare earth oxides as gate dielectrics for advanced CMOS devices. Materials 2012, 5, 1413–1438. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.; Zhou, J.; Zhang, J.; Jin, H.; Kakushima, K.; Iwai, H. The interfaces of lanthanum oxide-based subnanometer EOT gate dielectrics. Nano. Res. Lett. 2014, 9, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inamoto, S.; Yamasaki, J.; Kakushima, K.; Iwai, H.; Tanaka, N. Annealing effects on a high-k lanthanum oxide film on Si (001) analyzed by aberration-corrected transmission electron microscopy/scanning transmission electron microscopy and electron energy loss spectroscopy. J. Appl. Phys. 2010, 107, 124510. [Google Scholar] [CrossRef]
- Wong, H. Lanthana and its interface with silicon. In Proceedings of the 29th International Conference on Microelectronics—MIEL 2014, Nis, Serbia, 12–14 May 2014; pp. 35–41. [Google Scholar]
- Zhao, Y.P.; Wang, G.C.; Lu, T.M.; Palasantzas, G.; de Hosson, J.T.M. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys. Rev. B 1999, 60, 9157–9164. [Google Scholar] [CrossRef] [Green Version]
- Smoluchowski, R. Anisotropy of the electronic work function of metals. Phys. Rev. 1941, 60, 661–674. [Google Scholar] [CrossRef]
- Alimardani, N.; Conwell, E.W.; Wager, J.F.; Conley, J.F.; Evans, D.R.; Chin, M.; Kilpatrick, S.J.; Dubey, M. Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J. Vac. Sci. Technol. A 2012, 30, 01A113. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.L.; Lai, P.T.; Wong, H. Conduction mechanisms in MOS gate dielectric films. Microelectron. Reliab. 2004, 44, 709–718. [Google Scholar] [CrossRef]
- Du, L.; Wong, H.; Dong, S.; Lau, W.S.; Filip, V. AFM study on the surface morphologies of TiN films prepared by magnetron sputtering and Al2O3 films prepared by atomic layer deposition. Vacuum 2018, 153, 139–144. [Google Scholar] [CrossRef]
- Yu, D.Q.; Lau, W.S.; Wong, H.; Feng, X.; Dong, S.; Pey, K.L. The variation of the leakage current characteristics of W/Ta2O5/W MIM capacitors with the thickness of the bottom W electrode. Microelectron. Reliab. 2016, 61, 95–98. [Google Scholar] [CrossRef]
- Liu, Y.; Kijima, S.; Sugimata, E.; Masahara, M.; Endo, K.; Matsukawa, T. Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication. IEEE Trans. Nanotechnol. 2006, 5, 723–730. [Google Scholar] [CrossRef]
- Gogolides, E.; Boukouras, C.; Kokkoris, G.; Brani, O.; Tserepi, A.; Constantoudis, V. Si etching in high-density SF6 plasmas for microfabrication: Surface roughness formation. Microelectron. Eng. 2004, 73–74, 312–318. [Google Scholar] [CrossRef]
- Meakin, P. The growth of rough surfaces and interfaces. Phys. Rep. 1993, 235, 189–289. [Google Scholar] [CrossRef]
- Yeh, M.; Luo, G.; Hou, F.; Sung, P.; Wang, C.; Su, C.; Wu, C.-T.; Huang, Y.; Hong, T.; Chen, B.; et al. Ge FinFET CMOS inverters with improved channel surface roughness by using in-situ ALD digital O3 treatment. IEEE J. Electron Devices Soc. 2018, 6, 1232–1237. [Google Scholar] [CrossRef]
- Zheng, P.Y.; Zhou, T.; Engler, B.J.; Chawla, J.S.; Hull, R.; Gall, D. Surface roughness dependence of the electrical resistivity of W(001) layers. J. Appl. Phys. 2017, 122, 095304. [Google Scholar] [CrossRef] [Green Version]
- Milano, G.; Luebben, M.; Laurenti, M.; Porro, S.; Bejtka, K.; Bianco, S.; Breuer, U.; Boarino, L.; Valov, I.; Ricciardi, C. Ionic modulation of electrical conductivity of ZnO due to ambient moisture. Adv. Mater. Interfaces 2019, 6, 1900803. [Google Scholar] [CrossRef]
- Cho, D.-H.; Wang, L.; Kim, J.-S.; Lee, G.H.; Kim, E.S.; Lee, S.; Lee, S.Y.; Hone, J.; Lee, C. Effect of surface morphology on friction of graphene on various substrates. Nanoscale 2013, 5, 3063–3069. [Google Scholar] [CrossRef]
- Elinski, M.B.; Liu, Z.; Spear, J.C.; Batteas, J.D. 2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2. J. Phys. D Appl. Phys. 2017, 50, 103003. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, H.; Zhang, J.; Iwai, H.; Kakushima, K. Characteristic Variabilities of Subnanometer EOT La2O3 Gate Dielectric Film of Nano CMOS Devices. Nanomaterials 2021, 11, 2118. https://doi.org/10.3390/nano11082118
Wong H, Zhang J, Iwai H, Kakushima K. Characteristic Variabilities of Subnanometer EOT La2O3 Gate Dielectric Film of Nano CMOS Devices. Nanomaterials. 2021; 11(8):2118. https://doi.org/10.3390/nano11082118
Chicago/Turabian StyleWong, Hei, Jieqiong Zhang, Hiroshi Iwai, and Kuniyuki Kakushima. 2021. "Characteristic Variabilities of Subnanometer EOT La2O3 Gate Dielectric Film of Nano CMOS Devices" Nanomaterials 11, no. 8: 2118. https://doi.org/10.3390/nano11082118
APA StyleWong, H., Zhang, J., Iwai, H., & Kakushima, K. (2021). Characteristic Variabilities of Subnanometer EOT La2O3 Gate Dielectric Film of Nano CMOS Devices. Nanomaterials, 11(8), 2118. https://doi.org/10.3390/nano11082118