Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carboxylated CNTs
2.3. Synthesis of CNTs/CoNiFe-LDH Composite
2.4. Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reece, R.; Lekakou, C.; Smith, P.A. A High-Performance Structural Supercapacitor. ACS Appl. Mater. Interfaces 2020, 12, 25683–25692. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Choudhary, N.; Jung, Y.; Thomas, J. Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications. ACS Energy Lett. 2018, 3, 482–495. [Google Scholar] [CrossRef]
- Chaichi, A.; Venugopalan, G.; Devireddy, R.; Arges, C.; Gartia, M.R. A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range. ACS Appl. Energy Mater. 2020, 3, 5693–5704. [Google Scholar] [CrossRef]
- Chen, X.L.; Sun, H.; Yang, Z.B.; Guan, G.Z.; Zhang, Z.T.; Qiu, L.B.; Peng, H.S. A Novel “Energy Fiber” by Coaxially Integrating Dyesensitized Solar Cell and Electrochemical Capacitor. J. Mater. Chem. A 2014, 2, 1897–1902. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Manoharan, S.; Pazhamalai, P.; Kim, S.J. Electrospun Polymer-Derived Carbyne Supercapacitor for Alternating Current Line Filtering. Small 2021. Early View. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; da Silva, M.I.; Toma, H.E.; Angnes, L.; Martins, P.R.; Araki, K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: A review. J. Mater. Chem. A 2020, 8, 10534–10570. [Google Scholar] [CrossRef]
- Wei, D.D.; Zhang, Y.L.; Zhu, X.Z.; Fan, M.L.; Wang, Y.L. CNT/Co3S4@NiCo LDH Ternary Nanocomposites as Battery-type Electrode Materials for Hybrid Supercapacitors. J. Alloys Compd. 2020, 824, 153937. [Google Scholar] [CrossRef]
- Huang, Z.H.; Sun, F.F.; Yuan, Z.Y.; Sun, W.P.; Jia, B.H.; Li, H.; Li, H.; Ma, T.Y. An Electro-activated Bimetallic Zinc-nickel Hydroxide Cathode for Supercapacitor with Super-long 140,000 Cycle Durability. Nano Energy. 2021, 82, 105727. [Google Scholar] [CrossRef]
- Chu, Y.T.; Xiong, S.L.; Li, B.S.; Qian, Y.T.; Xi, B.J. Designed Formation of MnO2@NiO/NiMoO4Nanowires@Nanosheets Hierarchical Structures with Enhanced Pseudocapacitive Properties. ChemElectroChem 2016, 3, 1347–1353. [Google Scholar] [CrossRef]
- Wei, C.Z.; Cheng, C.; Wang, K.M.; Li, X.C.; Xiao, H.C.; Yao, Q.F. Hierarchical Ni–Co–Mn Hydroxide Hollow Architectures as High-performance Electrodes for Electrochemical Energy Storage. RSC Adv. 2021, 11, 15258. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Manavalan, S.; Thanasekaran, P.; Lin, K.C. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind. Eng. Chem. Res. 2020, 59, 6347–6374. [Google Scholar] [CrossRef]
- Xie, P.; Yuan, W.; Liu, X.B.; Peng, Y.M.; Yin, Y.H.; Li, Y.S.; Wu, Z.P. Advanced Carbon Nanomaterials for State-of-the-art Flexible Supercapacitors. Energy Storage Mater. 2021, 36, 56–76. [Google Scholar] [CrossRef]
- Wang, G.R.; Jin, Z.L.; Zhang, W.X. Ostensibly Phosphatized NiAl LDHs Nanoflowers with Remarkable Charge Storage Property for Asymmetric Supercapacitors. J. Colloid Interface Sci. 2020, 577, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.H.; Yan, W.; Zou, M.Y.; Miao, H.; Ma, F.X.; Patil, A.B.; Yu, R.; Liu, X.Y.; Lin, N.B. Tailoring NiCoAl Layered Double Hydroxide Nanosheets for Assembly of High-performance Asymmetric Supercapacitors. J. Colloid Interface Sci. 2021, 583, 722–733. [Google Scholar] [CrossRef]
- Lin, W.; Yu, W.; Hu, Z.; Ouyang, W.; Shao, X.; Li, R.; Yuan, D.S. Superior Performance Asymmetric Supercapacitors Based on Flake-like Co/Al Hydrotalcite and Graphene. Electrochim. Acta. 2014, 143, 331–339. [Google Scholar]
- Li, L.; Hui, K.S.; Hui, K.N.; Xia, Q.X.; Fu, J.J.; Cho, Y.R. Facile Synthesis of NiAl Layered Double Hydroxide Nanoplates for High-performance Asymmetric Supercapacitor. J. Alloys Compd. 2017, 721, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.P.; Li, J.; Yang, Y.; Luo, B.; Zhang, X.; Fong, E.; Chu, W.; Huang, K.M. Unique 3D Flower-on-sheet Nanostructure of NiCo LDHs: Controllable Microwave-assisted Synthesis and its Application for Advanced Supercapacitors. J. Alloys Compd. 2019, 788, 1029–1036. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, X.M.; Tong, X.Z.; Chen, Y.F.; Duan, M.T.; Shi, J.; Jiang, C.W.; Hu, L.L.; Kong, Q.H.; Zhang, J.H. High-performance Battery-type Supercapacitor based on Porous Biocarbon and Biocarbon Supported Ni-Co Layered Double Hydroxide. J. Alloys Compd. 2020, 837, 155529. [Google Scholar] [CrossRef]
- Liao, F.F.; Zhao, X.; Yang, G.Y.; Cheng, Q.H.; Mao, L.; Chen, L.Y. Recent Advances on Two-dimensional NiFe-LDHs and Their Composites for Electrochemical Energy Conversion and Storage. J. Alloys Compd. 2021, 872, 159649. [Google Scholar] [CrossRef]
- Rohit, R.C.; Jagadale, A.D.; Shinde, S.K.; Kim, D.Y.; Kumbhar, V.S.; Nakayama, M. Hierarchical Nanosheets of Ternary CoNiFe Layered Double Hydroxide for Supercapacitors and Oxygen Evolution Reaction. J. Alloys Compd. 2021, 863, 158081. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, M.; Meng, Y.; Fang, P.; Lu, X.; Tong, Y. Iron-based Supercapacitor Electrodes: Advances and Challenges. Adv. Energy Mater. 2016, 6, 1601053. [Google Scholar] [CrossRef]
- Li, F.Z.; Sun, Z.Q.; Jiang, H.; Ma, Z.Q.; Wang, Q.; Qu, F.Y. Ion-Exchange Synthesis of Ternary FeCoNi-Layered Double Hydroxide Nanocage Toward Enhanced Oxygen Evolution Reaction and Supercapacitor. Energy Fuels 2020, 34, 11628–11636. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.Y.; Su, Y.; Zhang, B.; Li, C.J.; Wang, H.; Wang, L.J. Design and Synthesis of Ternary-component Layered Double Hydroxides for High-Performance Supercapacitors: Understanding the Role of Trivalent Metal Ions. Electrochim. Acta 2017, 225, 263–271. [Google Scholar] [CrossRef]
- Su, L.H.; Song, Z.W.; Guo, J.L.; Li, J.J. Synthesis and Low-Temperature Capacitive Performances of Ternary Active Site CoNiFe Hydroxides. ChemistrySelect 2017, 2, 2667–2671. [Google Scholar] [CrossRef]
- Zhang, S.D.; Liu, J.; Huang, P.P.; Wang, H.; Cao, C.Y.; Song, W.G. Carbonaceous Aerogel and CoNiAl-LDH@CA Nanocomposites Derived from Biomass for High Performance Pseudo-supercapacitor. Sci. Bull. 2017, 62, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Akbar, A.R.; Hu, H.H.; Qadir, M.B.; Tahir, M.; Khaliq, Z.; Liu, Z.K.; Xiong, C.X.; Yang, Q.L. Optimized Structure and Electrochemical Properties of Sulfonated Carbon Nanotubes/Co–Ni Bimetallic Layered Hydroxide Composites for High-Performance Supercapacitors. Ceram. Int. 2021, 47, 4648–4658. [Google Scholar] [CrossRef]
- Chen, T.T.; Luo, L.; Wu, X.; Zhou, Y.L.; Yan, W.; Fan, M.Z.; Zhao, W.G. Three Dimensional Hierarchical Porous Nickel Cobalt Layered Double Hydroxides (LDHs) and Nitrogen Doped Activated Biocarbon Composites for High-Performance Asymmetric Supercapacitor. J. Alloys Compd. 2021, 859, 158318. [Google Scholar] [CrossRef]
- Li, M.; Jijie, R.; Barras, A.; Roussel, P.; Szunerits, S.; Boukherroub, R. NiFe Layered Double Hydroxide Electrodeposited on Ni foam Coated with Reduced Graphene Oxide for High-performance Supercapacitors. Electrochim. Acta 2019, 302, 1–9. [Google Scholar] [CrossRef]
- Qiu, H.R.; Sun, X.J.; An, S.L.; Lan, D.W.; Cui, L.L.; Zhang, Y.Q.; He, W.X. Microwave Synthesis of Histidine-functionalized Graphene Quantum Dots/Ni-Co LDH with Flower Ball Structure for Supercapacitor. J. Colloid Interface Sci. 2020, 567, 264–273. [Google Scholar] [CrossRef]
- Dinari, M.; Allami, H.; Momeni, M.M. Construction of Ce-Doped NiCo-LDH@CNT Nanocomposite Electrodes for High-Performance Supercapacitor Application. Energy Fuels 2021, 35, 1831–1841. [Google Scholar] [CrossRef]
- Huang, M.H.; Wang, Y.; Chen, J.C.; He, D.W.; He, J.Q.; Wang, Y.S. Biomimetic Design of NiCo-LDH Composites Linked by Carbon Nanotubes with Plant Conduction Tissues Characteristic for Hybrid Supercapacitors. Electrochim. Acta 2021, 381, 138289. [Google Scholar] [CrossRef]
- Tian, J.Y.; Cui, N.J.; Chen, P.N.; Guo, K.K.; Chen, X.L. High-performance Wearable Supercapacitor Based on PANI/N-CNT@CNT Fiber with Designed Hierarchical Core-sheath Structure. J. Mater. Chem. A 2021. Early View. [Google Scholar] [CrossRef]
- Bai, C.H.; Sun, S.G.; Xu, Y.Q.; Yu, R.J.; Li, H.J. Facile One-step Synthesis of Nanocomposite Based on Carbon Nanotubes and Nickel-Aluminum Layered Double Hydroxides with High Cycling Stability for Supercapacitors. J. Colloid Interface Sci. 2016, 480, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shi, N.; Liu, Q.; Wang, J.; Yang, B.; Wang, B.; Yan, H.; Sun, Y.; Jing, X. Facile Synthesis of Exfoliated Co-Al LDH-carbon Nanotube Composites with High Performance as Supercapacitor Electrodes. Phys. Chem. Chem. Phys. 2014, 16, 17936–17942. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Dou, Y.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X. Flexible CoAl LDH@PEDOT Core/shell Nanoplatelet Array for High-performance Energy Storage. Small 2013, 9, 98–106. [Google Scholar] [CrossRef]
- Wimalasiri, Y.; Fan, R.; Zhao, X.S.; Zou, L. Assembly of Ni-Al Layered Double Hydroxide and Graphene Electrodes for Supercapacitors. Electrochim. Acta 2014, 134, 127–135. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D.G.; Duan, X. Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Adv. Funct. Mater. 2014, 24, 2938–2946. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Bi, H.; Zhao, X.; Wang, C.; Zhang, J.; Li, Y.; Che, R. Facile Preparation of 3D Hierarchical Coaxial-cable-like Ni-CNTs@beta-(Ni,Co) Binary Hydroxides for Supercapacitors with Uultrahigh Specific Capacitance. J. Colloid Interface Sci. 2017, 502, 33–43. [Google Scholar] [CrossRef]
- Yang, X.T.; Gao, Y.B.; Zhao, Z.Z.; Tian, Y.; Kong, X.G.; Lei, X.D.; Zhang, F.Z. Three-dimensional Spherical Composite of Layered Double Hydroxides/carbon Nanotube for Ethanol Electrocatalysis. Appl. Clay Sci. 2021, 202, 105964. [Google Scholar] [CrossRef]
- Elgendy, A.; El Basiony, N.M.; El-Taib Heakal, F.; Elkholy, A.E. Mesoporous Ni-Zn-Fe Layered Double Hydroxide as an Efficient Binder-free Electrode Active Material for High-performance Supercapacitors. J. Power Sources 2020, 466, 228294. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.C.; Hou, H.J.; Wu, L.S.; Zhu, X.L.; Hu, J.P.; Yang, J.K. Facile Preparation of Flower-like NiMn Layered Double Hydroxide/reduced Graphene Oxide Microsphere Composite for High-performance Asymmetric Supercapacitors. J. Alloys Compd. 2018, 730, 71–80. [Google Scholar] [CrossRef]
- Yang, J.; Yu, C.; Fan, X.M.; Ling, Z.; Qiu, J.S.; Gogotsi, Y. Facile Fabrication of MWCNT-doped NiCoAl-layered Double Hydroxide Nanosheets with Enhanced Electrochemical Performances. J. Mater. Chem. A 2013, 1, 1963–1968. [Google Scholar] [CrossRef]
- Li, C.Y.; Li, X.; Wang, H.Q.; Zheng, M.L.; Tian, F.; Tan, R.Y.; Huo, P.W.; Yan, Y.; Wang, X.K. Fabricated Ga (III) Heterovalent Substituted NiCo Layered Double Hydroxides (NiCoGa-LDHs) Electrode Material for Designed Hybrid Supercapacitor. J. Alloys Compd. 2021, 871, 159487. [Google Scholar] [CrossRef]
- Yu, C.; Yang, J.; Zhao, C.T.; Fan, X.M.; Wang, G.; Qiu, J.S. Nanohybrids from NiCoAl-LDH Coupled with Carbon for Pseudocapacitors: Understanding the Role of Nano-structured Carbon. Nanoscale 2014, 6, 3097. [Google Scholar] [CrossRef]
- Zhang, L.J.; Hui, K.N.; Hui, K.S.; Lee, H. Facile Synthesis of Porous CoAl-layered Double Hydroxide/graphene Composite with Enhanced Capacitive Performance for Supercapacitors. Electrochim. Acta 2015, 186, 522–529. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kesavan, D.; Kim, S.J. Two Dimensional Famatinite Sheets Decorated on Reduced Graphene Oxide: A Novel Electrode for High Performance Supercapacitors. J. Power Sources 2019, 433, 126648. [Google Scholar] [CrossRef]
- Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 2015, 60, 21–25. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ding, Q.; Bai, C.; Wang, F.; Sun, S.; Xu, Y.; Li, H. Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor. Nanomaterials 2021, 11, 2155. https://doi.org/10.3390/nano11092155
Wang J, Ding Q, Bai C, Wang F, Sun S, Xu Y, Li H. Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor. Nanomaterials. 2021; 11(9):2155. https://doi.org/10.3390/nano11092155
Chicago/Turabian StyleWang, Jianwei, Qian Ding, Caihui Bai, Feifei Wang, Shiguo Sun, Yongqian Xu, and Hongjuan Li. 2021. "Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor" Nanomaterials 11, no. 9: 2155. https://doi.org/10.3390/nano11092155
APA StyleWang, J., Ding, Q., Bai, C., Wang, F., Sun, S., Xu, Y., & Li, H. (2021). Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor. Nanomaterials, 11(9), 2155. https://doi.org/10.3390/nano11092155