Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Porous and Solid Silicon Nanoparticles
2.2. Characterization of Nanoparticles
2.3. Dissolution in Model Liquids
2.4. Cytotoxicity Studies
2.4.1. Cell Culture and Experimental Procedures
2.4.2. FACS Analysis
2.4.3. Gel Electrophoresis and Western Blot Analysis (WB)
2.4.4. Antibodies
2.5. SiNPs Biodegradation Studies
2.5.1. Luminescent Imaging
2.5.2. Raman Imaging and Spectral Data Analysis
3. Results and Discussion
3.1. Sample Characterization
3.2. Optical Monitoring of SiNPs Dissolution in Model Liquids
3.3. Cytotoxicity Study
3.4. Optical Monitoring of SiNPs Biodegradation In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kumeria, T.; McInnes, S.J.P.; Maher, S.; Santos, A. Porous Silicon for Drug Delivery Applications and Theranostics: Recent Advances, Critical Review and Perspectives. Expert Opin. Drug Deliv. 2017, 14, 1407–1422. [Google Scholar] [CrossRef] [PubMed]
- Canham, L. Introductory Lecture: Origins and Applications of Efficient Visible Photoluminescence from Silicon-Based Nanostructures. Faraday Discuss 2020, 222, 10–81. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications. Nat. Mater. 2009, 8, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Osminkina, L.A.; Gongalsky, M.B.; Motuzuk, A.V.; Timoshenko, V.Y.; Kudryavtsev, A.A. Silicon Nanocrystals as Photo- and Sono-Sensitizers for Biomedical Applications. Appl. Phys. B Lasers Opt. 2011, 105, 665–668. [Google Scholar] [CrossRef]
- Xiao, L.; Gu, L.; Howell, S.B.; Sailor, M.J. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity against Cancer Cells. ACS Nano 2011, 5, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, A.P.; Osminkina, L.A.; Kharin, A.Y.; Gongansky, M.B.; Kargina, J.V.; Kudryavtsev, A.A.; Bezsudnova, Y.I.; Perova, T.S.; Geloen, A.; Lysenko, V.; et al. Cytotoxicity Control of Silicon Nanoparticles by Biopolymer Coating and Ultrasound Irradiation for Cancer Theranostic Applications. Nanotechnology 2017, 28, 105102. [Google Scholar] [CrossRef]
- Gongalsky, M.; Gvindzhiliia, G.; Tamarov, K.; Shalygina, O.; Pavlikov, A.; Solovyev, V.; Kudryavtsev, A.; Sivakov, V.; Osminkina, L.A. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS Omega 2019, 4, 10662–10669. [Google Scholar] [CrossRef]
- Tamarov, K.P.; Osminkina, L.A.; Zinovyev, S.V.; Maximova, K.A.; Kargina, J.V.; Gongalsky, M.B.; Ryabchikov, Y.; Al-Kattan, A.; Sviridov, A.P.; Sentis, M.; et al. Radio Frequency Radiation-Induced Hyperthermia Using Si Nanoparticle-Based Sensitizers for Mild Cancer Therapy. Sci. Rep. 2014, 4, 7034. [Google Scholar] [CrossRef]
- Gongalsky, M.B.; Kargina, Y.V.; Osminkina, L.A.; Perepukhov, A.M.; Gulyaev, M.V.; Vasiliev, A.N.; Pirogov, Y.A.; Maximychev, A.V.; Timoshenko, V.Y. Porous Silicon Nanoparticles as Biocompatible Contrast Agents for Magnetic Resonance Imaging. Appl. Phys. Lett. 2015, 107, 233702. [Google Scholar] [CrossRef]
- Tamarov, K.; Sviridov, A.; Xu, W.; Malo, M.; Andreev, V.; Timoshenko, V.; Lehto, V.-P. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Appl. Mater. Interfaces 2017, 9, 35234–35243. [Google Scholar] [CrossRef]
- Durnev, A.D.; Solomina, A.S.; Shreder, E.D.; Nemova, E.P.; Shreder, O.V.; Dauge, N.O.L.; Zhanataev, A.K.; Veligura, V.A.; Osminkina, L.A.; Gongalsky, M.B.; et al. In Vivo Study of Genotoxicity and Teratogenicity of Silica Nanocrystals. Int. J. Biomed. Nanosci. Nanotechnol. 2010, 1, 70. [Google Scholar] [CrossRef]
- Canham, L.T. Nanoscale Semiconducting Silicon as a Nutritional Food Additive. Nanotechnology 2007, 18, 185704. [Google Scholar] [CrossRef]
- Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv. Mater. 2017, 29, 1604634. [Google Scholar] [CrossRef] [PubMed]
- Gongalsky, M.B.; Sviridov, A.P.; Bezsudnova, Y.I.; Osminkina, L.A. Biodegradation Model of Porous Silicon Nanoparticles. Colloids Surf. B Biointerfaces 2020, 190, 110946. [Google Scholar] [CrossRef]
- Tolstik, E.; Osminkina, L.A.; Matthäus, C.; Burkhardt, M.; Tsurikov, K.E.; Natashina, U.A.; Timoshenko, V.Y.; Heintzmann, R.; Popp, J.; Sivakov, V. Studies of Silicon Nanoparticles Uptake and Biodegradation in Cancer Cells by Raman Spectroscopy. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Osminkina, L.A.; Tamarov, K.P.; Sviridov, A.P.; Galkin, R.A.; Gongalsky, M.B.; Solovyev, V.V.; Kudryavtsev, A.A.; Timoshenko, V.Y. Photoluminescent Biocompatible Silicon Nanoparticles for Cancer Theranostic Applications. J. Biophotonics 2012, 5, 529–535. [Google Scholar] [CrossRef]
- Jia, X.; Lin, Z.; Zhang, T.; Puthen-Veettil, B.; Yang, T.; Nomoto, K.; Ding, J.; Conibeer, G.; Perez-Wurfl, I. Accurate Analysis of the Size Distribution and Crystallinity of Boron Doped Si Nanocrystals via Raman and PL Spectra. RSC Adv. 2017, 7, 34244. [Google Scholar] [CrossRef] [Green Version]
- Canham, L.T. Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers Metal-Assisted Chemical Etching in Produces Porous Silicon Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers. J. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Zhang, M.L.; Peng, K.Q.; Fan, X.; Jie, J.S.; Zhang, R.Q.; Lee, S.T.; Wong, N.B. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. J. Phys. Chem. C 2008, 112, 4444–4450. [Google Scholar] [CrossRef]
- Taylor, A.; Sinclair, H. On the Determination of Lattice Parameters by the Debye-Scherrer Method. Proc. Phys. Soc. 1945, 57, 126–135. [Google Scholar] [CrossRef]
- Theiss, W. Optical Properties of Porous Silicon. Surf. Sci. Rep. 1997, 29, 91–192. [Google Scholar] [CrossRef]
- Osminkina, L.A.; Sivakov, V.A.; Mysov, G.A.; Georgobiani, V.A.; Natashina, U.A.; Talkenberg, F.; Solovyev, V.V.; Kudryavtsev, A.A.; Timoshenko, V.Y. Nanoparticles Prepared from Porous Silicon Nanowires for Bio-Imaging and Sonodynamic Therapy. Nanoscale Res. Lett. 2014, 9, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazebnik, Y.A.; Kaufmann, S.H.; Desnoyers, S.; Poirier, G.G.; Earnshaw, W.C. Cleavage of Poly(ADP-Ribose) Polymerase by a Proteinase with Properties like ICE. Nature 1994, 371, 346–347. [Google Scholar] [CrossRef]
- Crowley, L.C.; Marfell, B.J.; Scott, A.P.; Boughaba, J.A.; Chojnowski, G.; Christensen, M.E.; Waterhouse, N.J. Dead Cert: Measuring Cell Death. Cold Spring Harb. Protoc. 2016, 2016, 1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, M.; Li, L.; Liang, Z.; Zou, Z.; Tao, A. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells. J. Breast Cancer 2016, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Boucher, D.; Blais, V.; Denault, J.-B. Caspase-7 Uses an Exosite to Promote Poly(ADP Ribose) Polymerase 1 Proteolysis. Proc. Natl. Acad. Sci. USA 2012, 109, 5669–5674. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.H.; Fauchet, P.M. The Effects of Microcrystal Size and Shape on the One Phonon Raman Spectra of Crystalline Semiconductors. Solid State Commun. 1986, 58, 739–741. [Google Scholar] [CrossRef]
Sample Type | sol-SiNPs | por-SiNPs |
---|---|---|
Size of SiNPs (by DLS), nm | 140 | 130 |
Size of nanocrystals (by TEM), nm | 30 | 3 |
Zeta potential, mV | −50 | −30 |
Specific surface area, m2/g | 29 | 185 |
Pore volume, cm3/g | 0.39 | 0.83 |
Pore diameter, nm | 68 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gongalsky, M.B.; Pervushin, N.V.; Maksutova, D.E.; Tsurikova, U.A.; Putintsev, P.P.; Gyuppenen, O.D.; Evstratova, Y.V.; Shalygina, O.A.; Kopeina, G.S.; Kudryavtsev, A.A.; et al. Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles. Nanomaterials 2021, 11, 2167. https://doi.org/10.3390/nano11092167
Gongalsky MB, Pervushin NV, Maksutova DE, Tsurikova UA, Putintsev PP, Gyuppenen OD, Evstratova YV, Shalygina OA, Kopeina GS, Kudryavtsev AA, et al. Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles. Nanomaterials. 2021; 11(9):2167. https://doi.org/10.3390/nano11092167
Chicago/Turabian StyleGongalsky, Maxim B., Nikolay V. Pervushin, Daria E. Maksutova, Uliana A. Tsurikova, Pavel P. Putintsev, Oleg D. Gyuppenen, Yana V. Evstratova, Olga A. Shalygina, Gelina S. Kopeina, Andrey A. Kudryavtsev, and et al. 2021. "Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles" Nanomaterials 11, no. 9: 2167. https://doi.org/10.3390/nano11092167
APA StyleGongalsky, M. B., Pervushin, N. V., Maksutova, D. E., Tsurikova, U. A., Putintsev, P. P., Gyuppenen, O. D., Evstratova, Y. V., Shalygina, O. A., Kopeina, G. S., Kudryavtsev, A. A., Zhivotovsky, B., & Osminkina, L. A. (2021). Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles. Nanomaterials, 11(9), 2167. https://doi.org/10.3390/nano11092167