Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries
Abstract
:1. Introduction
2. Experiment Procedure
2.1. Preparation of Carbon Nanofibers
2.2. Preparation of Sn@CNFs
2.3. Preparation of Fe3O4@CNFs
2.4. Preparation of Fe3O4-Sn@CNFs
2.5. Preparation of Fe3O4 Powder
2.6. Characterization of Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286. [Google Scholar] [CrossRef]
- Kang, K.; Meng, Y.S.; Breger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. ChemInform 2006, 37, 977–980. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Li, G.; Zhou, M.; He, B.; Ouyang, J.; Xu, W.; Wang, W.; Hou, Z. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. J. Mater. Sci. Technol. 2020, 44, 229–236. [Google Scholar] [CrossRef]
- Chen, S.; Wu, J.; Zhou, R.; Zuo, L.; Li, P.; Song, Y.; Wang, L. Porous carbon spheres doped with Fe3C as an anode for high-rate lithium-ion batteries. Electrochim. Acta 2015, 180, 78–85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Haridas, A.K.; Sun, Y.; Heo, J.; Ahn, J.-H.; Lee, Y. Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies 2020, 13, 827. [Google Scholar] [CrossRef] [Green Version]
- Buqa, H.; Goers, D.; Holzapfel, M.; Spahr, M.E.; Novák, P. High Rate Capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A474–A481. [Google Scholar] [CrossRef]
- Luo, W.; Chen, X.; Xia, Y.; Chen, M.; Wang, L.; Wang, Q.; Li, W.; Yang, J. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083. [Google Scholar] [CrossRef]
- Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q. Hollow Porous SiO2 Nanocubes Towards high-performance anodes for lithium-ion batteries. Sci. Rep. 2013, 3, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghipari, M.; Mashayekhi, A.; Mohajerzadeh, S. Novel approach for improving the performance of Si-based anodes in lithium-ion batteries. Nanotechnology 2018, 29, 055403. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Z.; Zhao, K. Lithiation of SiO2 in li-ion Batteries: In situ transmission electron microscopy experiments and theoretical studies. Nano Lett. 2014, 14, 7161–7170. [Google Scholar] [CrossRef]
- Ke, F.-S.; Huang, L.; Cai, J.-S.; Sun, S.-G. Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim. Acta 2007, 52, 6741–6747. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, W.; Liu, X.; Yang, R.; Li, X. Synthesis and electrochemical performances of amorphous carbon-coated Sn–Sb particles as anode material for lithium-ion batteries. J. Solid State Chem. 2007, 180, 3360–3365. [Google Scholar] [CrossRef]
- Yin, J.; Wada, M.; Kitano, Y.; Tanase, S.; Kajita, O.; Sakai, T. Nanostructured Ag–Fe–Sn/Carbon nanotubes composites as anode materials for advanced lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A1341–A1346. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, A.-Q.; Zhang, H.; Ding, G.-Q.; Zhang, L.-S. A facile route to achieve Fe2O3 hollow sphere anchored on carbon nanotube for application in lithium-ion battery. Inorg. Chem. Commun. 2019, 111, 107633. [Google Scholar] [CrossRef]
- Li, Y.F.; Fu, Y.Y.; Chen, S.H.; Huang, Z.Z.; Wang, L.; Song, Y.H. Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Compos. Part B Eng. 2019, 171, 130–137. [Google Scholar] [CrossRef]
- Deng, J.; Lv, X.; Zhong, J.; Sun, X. Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries. Appl. Surf. Sci. 2019, 475, 446–452. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 2011, 3, 2615–2620. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, W.; Zhang, X.Q.; Wang, C.; Yuan, Y.H.; Huang, Y.; Ye, Y.T.; Qiu, Z.Q.; Tang, Y. A review on FexOy-based materials for advanced lithium-ion batteries. Renew. Sust. Energ. Rev. 2020, 127, 1–32. [Google Scholar] [CrossRef]
- Choi, N.-S.; Chen, Z.; Freunberger, S.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.; Cho, J.; Bruce, P.G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, W.-J. Hierarchically mesoporous carbon nanofiber/Mn3O4 coaxial nanocables as anodes in lithium ion batteries. J. Power Sources 2015, 281, 301–309. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, P.; Li, L.; Yang, K.; Wang, K.; Liu, S.; Yu, Z. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chem. Eng. J. 2018, 348, 599–607. [Google Scholar] [CrossRef]
- Li, X.; Dhanabalan, A.; Gu, L.; Wang, C. Three-dimensional porous core-shell Sn@Carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2011, 2, 238–244. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.-W.; Li, F.; Zhang, L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G.; Cheng, H.-M. Graphene-wrapped Fe3O4Anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313. [Google Scholar] [CrossRef]
- Liu, N.; Li, C.; Xie, H.; Liu, Y.; Liu, J.; Gao, J.; Han, J.; Chen, J.; Wei, Y.; Lin, B.; et al. Doping graphene into monodispersed Fe3O4 microspheres with droplet microfluidics for enhanced electrochemical performance in lithium-ion batteries. Batter. Supercaps 2019, 2, 49–54. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Liu, D.; Hu, J.; Han, L.; Wang, Z.; Pan, F. A Conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 1672–1677. [Google Scholar] [CrossRef]
- Oh, J.; Lee, J.; Jeon, Y.; Kim, J.M.; Seong, K.-D.; Hwang, T.; Park, S.; Piao, Y. Ultrafine Sn nanoparticles anchored on nitrogen- and phosphorus-doped hollow carbon frameworks for lithium-ion batteries. ChemElectroChem 2018, 5, 2098–2104. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, H.; Wu, J.; Chu, X.; He, Y.-B.; Han, C.; Miao, C.; Wang, S.; Li, B.; Kang, F. Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 2015, 87, 347–356. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Liu, F.; Liu, C.; Wang, J.; Pan, Y.; Xue, D. One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv. 2012, 2, 2262–2265. [Google Scholar] [CrossRef]
- Duan, H.; Gnanaraj, J.; Chen, X.; Li, B.; Liang, J. Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery. J. Power Sources 2008, 185, 512–518. [Google Scholar] [CrossRef]
- Lv, P.; Zhao, H.; Zeng, Z.; Wang, J.; Zhang, T.; Li, X. Facile preparation and electrochemical properties of carbon coated Fe3O4 as anode material for lithium-ion batteries. J. Power Sources 2014, 259, 92–97. [Google Scholar] [CrossRef]
- Hu, J.; Shao, C.; Li, B.; Yang, Y.; Li, Y. Fabrication of carbonaceous nanotubes and mesoporous nanofibers as stable anode materials for lithium-ion battery. ACS Appl. Nano Mater. 2018, 1, 5536–5542. [Google Scholar] [CrossRef]
- Su, D.; Ahn, H.-J.; Wang, G. One-dimensional magnetite Fe3O4 nanowires as electrode material for Li-ion batteries with improved electrochemical performance. J. Power Sources 2013, 244, 742–746. [Google Scholar] [CrossRef]
- Bhuvaneswari, S.; Pratheeksha, P.M.; Anandan, S.; Rangappa, D.; Gopalan, R.; Rao, T.N. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 5284–5294. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, M.; Yue, W.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Sandwich-structured graphene-Fe3O4@Carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709–9715. [Google Scholar] [CrossRef] [PubMed]
- Ban, C.; Wu, Z.; Gillaspie, D.T.; Chen, L.; Yan, Y.; Blackburn, J.; Dillon, A.C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate li-ion anode. Adv. Mater. 2010, 22, E145–E149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, D.; Chen, J.; Lai, C.; Li, L.; Wang, C. Facile synthesis and electrochemical properties of Fe3O4 hexahedra for Li-ion battery anode. Mater. Lett. 2015, 141, 319–322. [Google Scholar] [CrossRef]
- Wang, Y. Hollow Fe3O4 Spheres as efficient sulfur host for advanced electrochemical energy storage. Int. J. Electrochem. Sci. 2019, 14, 1416–1422. [Google Scholar] [CrossRef]
- Mao, O.; Dunlap, R.A.; Dahn, J.R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for li-ion batteries: I. The Sn2Fe-C system. J. Electrochem. Soc. 1999, 146, 405–413. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, R.; Ji, D.; Chernova, N.A.; Karki, K.; Sallis, S.; Piper, L.; Whittingham, M.S. The anode challenge for lithium-ion batteries: A mechanochemically synthesized Sn–Fe–C composite anode surpasses graphitic carbon. Adv. Sci. 2016, 3, 1500229. [Google Scholar] [CrossRef]
- Zhang, R.; Upreti, S.; Whittingham, M.S. Tin-iron based nano-materials as anodes for li-ion batteries. J. Electrochem. Soc. 2011, 158, A1498–A1504. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, F.; Wang, Y. Confined volume change in Sn-Co-C ternary tube-in-tube composites for high-capacity and long-life lithium storage. Adv. Funct. Mater. 2012, 23, 893–899. [Google Scholar] [CrossRef]
- Bi, H.; Li, X.; Chen, J.; Zhang, L.; Bie, L. Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode. J. Mater. Sci. Mater. Electron. 2020, 31, 22224–22238. [Google Scholar] [CrossRef]
- Li, J.T.; Swiatowska, J.; Seyeux, A.; Huang, L.; Maurice, V.; Sun, S.-G.; Marcus, P. XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery. J. Power Sources 2010, 195, 8251–8257. [Google Scholar] [CrossRef]
- Ke, F.-S.; Huang, L.; Solomon, B.C.; Wei, G.-Z.; Xue, L.-J.; Zhang, B.; Li, J.-T.; Zhou, X.-D.; Sun, S.-G. Three-dimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 17511–17517. [Google Scholar] [CrossRef]
- Devaraj, L.; Jayapandi, S.; Balakrishnan, N.; Selvin, P.C. Compound semiconducting SnSb alloy anodes for Li ion batteries: Effect of elemental composition of Sn-Sb. Semicond. Sci. Technol. 2020, 35, 045008. [Google Scholar] [CrossRef]
- Wang, K.; He, X.; Ren, J.; Wang, L.; Jiang, C.; Wan, C. Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides. Electrochim. Acta 2006, 52, 1221–1225. [Google Scholar] [CrossRef]
- Wang, X.-L.; Feygenson, M.; Aronson, M.C.; Han, W.-Q. Sn/SnOx Core−shell nanospheres: Synthesis, anode performance in li ion batteries, and superconductivity. J. Phys. Chem. C 2010, 114, 14697–14703. [Google Scholar] [CrossRef]
- Su, Y.; Fu, B.; Yuan, G.; Ma, M.; Jin, H.; Xie, S.; Li, J. Three-dimensional mesoporous γ-Fe2O3@carbon nanofiber network as high performance anode material for lithium and sodium-ion batteries. Nanotechnology 2020, 31, 155401. [Google Scholar] [CrossRef]
- Barakat, N.A.; Motlak, M.; Kim, B.-S.; El-Deen, A.G.; Al-Deyab, S.S.; Hamza, A. Carbon nanofibers doped by Ni x Co 1−x alloy nanoparticles as effective and stable non precious electrocatalyst for methanol oxidation in alkaline media. J. Mol. Catal. A Chem. 2014, 394, 177–187. [Google Scholar] [CrossRef]
- Huang, Y.; Miao, Y.-E.; Ji, S.; Tjiu, W.W.; Liu, T. Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 2014, 6, 12449–12456. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lv, P.; Zhu, J.; Lu, Y.; Chen, C.; Zhang, X.; Wei, Q. NiCu alloy nanoparticle-loaded carbon nanofibers for phenolic biosensor applications. Sensors 2015, 15, 29419–29433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lu, B.; Hao, J.; Yang, W.; Tang, J. FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2014, 50, 11554–11557. [Google Scholar] [CrossRef]
- Meng, L.; Guo, R.; Li, F.; Ma, Y.; Peng, J.; Li, T.; Luo, Y.; Li, Y.; Sun, X. Facile synthesis of flock-like V2O3/C with improved electrochemical performance as an anode material for li-ion batteries. Energy Technol. 2020, 8. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, L.; Woodroof, M.D.; Zhang, X. Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 5025–5031. [Google Scholar] [CrossRef]
- Wang, F.; Cai, J.; Yu, J.; Li, C.; Yang, Z. Simultaneous electrospinning and electrospraying: Fabrication of a carbon nanofibre/MnO/reduced graphene oxide thin film as a high-performance anode for lithium-ion batteries. ChemElectroChem 2018, 5, 51–61. [Google Scholar] [CrossRef]
- Wang, J.; Xie, S.; Li, L.; Li, Z.; Asiri, A.M.; Marwani, H.M.; Han, X.; Wang, H. Electrospinning synthesis of porous NiCoO2 nanofibers as high-performance anode for lithium-ion batteries. Part. Part. Syst. Charact. 2019, 36, 1900109. [Google Scholar] [CrossRef]
- Li, H.; Lu, B.-R.; Zhang, W.-D.; Cao, F.-H.; Zhang, C.-L. Assembly of GO nanosheets–coated zeolitic imidazolate framework-67 nanocubes via electrospinning and their derivatives for enhanced lithium-ion storage performance. Energy Technol. 2020, 8, 2000209. [Google Scholar] [CrossRef]
- Xie, S.M.; Yao, T.H.; Wang, J.K.; Alsulami, H.; Kutbi, M.A.; Wang, H.K. Coaxially integrating TiO 2/MoO 3 into carbon nanofibers via electrospinning towards enhanced lithium ion storage performance. ChemistrySelect 2020, 5, 3225–3233. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, W.-J. Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell–core structure as anodes for lithium ion batteries. Carbon 2015, 89, 197–207. [Google Scholar] [CrossRef]
- Kwon, H.J.; Hwang, J.-Y.; Shin, H.-J.; Jeong, M.-G.; Chung, K.Y.; Sun, Y.-K.; Jung, H.-G. Nano/microstructured silicon–carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for li-ion batteries. Nano Lett. 2019, 20, 625–635. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Z.-L.; He, Y.-B.; Abouali, S.; Garakani, M.A.; Heidari, E.K.; Kang, F.; Kim, J.-K. Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy 2014, 4, 88–96. [Google Scholar] [CrossRef]
- Zhang, B.; Yü, Y.; Xu, Z.-L.; Abouali, S.; Akbari, M.; He, Y.-B.; Kang, F.; Kim, J.-K. Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films. Adv. Energy Mater. 2014, 4, 1301448. [Google Scholar] [CrossRef]
- Gao, S.; Wang, N.; Li, S.; Li, D.; Cui, Z.; Yue, G.; Liu, J.; Zhao, X.; Jiang, L.; Zhao, Y. A multi-wall Sn/SnO2 @Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, C.; Zhang, X.; Sun, X.; Wang, K.; Ma, Y. High performance lithium-ion hybrid capacitors employing Fe3O4–graphene composite anode and activated carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 17136–17144. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.P.; Luo, X.L.; Yang, J.; Xiao, X.; Zuo, X.X.; Nan, J.M. Structural engineering of Fe2.8Sn0.2O4@C micro/nano composite as anode material for high-performance lithium ion batteries. J. Power Sources 2020, 468, 228366. [Google Scholar] [CrossRef]
- Xie, Q.X.; Zhang, Y.F.; Xie, D.L.; Zhao, P. Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. J. Electroanal. Chem. 2020, 857, 113749. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, K.; Jia, K.; Liu, G.; He, X.; Liu, W.; Li, K.; Zhang, Z. Nitrogen-doped graphene nanosheet coated nanospherical Fe3O4 from zeolitic imidazolate frameworks template as anode of lithium ion batteries. Energy Fuels 2020, 34, 14986–14994. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ma, Y.; Zhang, W. Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries. Nanomaterials 2021, 11, 2203. https://doi.org/10.3390/nano11092203
Wang H, Ma Y, Zhang W. Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries. Nanomaterials. 2021; 11(9):2203. https://doi.org/10.3390/nano11092203
Chicago/Turabian StyleWang, Hong, Yuejin Ma, and Wenming Zhang. 2021. "Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries" Nanomaterials 11, no. 9: 2203. https://doi.org/10.3390/nano11092203
APA StyleWang, H., Ma, Y., & Zhang, W. (2021). Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries. Nanomaterials, 11(9), 2203. https://doi.org/10.3390/nano11092203