Octahedral Shaped PbTiO3-TiO2 Nanocomposites for High-Efficiency Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. Photocatalytic H2 Generation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, A.; Subramanian, G.; Suresh, C.P. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Li, M.; Chen, X.; Ren, Z.; Tian, H.; Li, X.; Lu, Y.H.; Han, G.R. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures. Nano Energy 2018, 45, 304–310. [Google Scholar] [CrossRef]
- Zhang, M.; Shang, Q.G.; Wan, Y.Q.; Cheng, Q.R.; Liao, G.Y.; Pan, Z.Q. Self-template synthesis of double-shell TiO2 @ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl. Catal. B-Environ. 2019, 241, 149–158. [Google Scholar] [CrossRef]
- Ren, D.D.; Shen, R.C.; Jiang, Z.M.; Lu, X.Y.; Li, X. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions. Chin. J. Catal. 2020, 41, 31–40. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735. [Google Scholar] [CrossRef]
- Burbure, N.V.; Salvador, P.A.; Rohrer, G.S. Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity. Chem. Mater. 2010, 22, 5823–5830. [Google Scholar] [CrossRef]
- He, F.; Meng, A.Y.; Cheng, B.; Ho, W.K.; Yu, J.G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20. [Google Scholar] [CrossRef]
- Sheng, L.; Ren, H.; Wu, Z.; Sun, L.; Zhang, X.G.; Lin, Y.M.; Zhang, K.H.L.; Lin, C.J.; Tian, Z.Q.; Li, J.F. Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting. J. Energy Chem. 2021, 59, 721–729. [Google Scholar]
- An, X.Q.; Yu, J.C. Graphene-based photocatalytic composites. RSC Adv. 2011, 1, 1426–1434. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Singh, R.; Dutta, S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 2018, 220, 607–620. [Google Scholar] [CrossRef]
- Domen, K. Characteristics of Photoexcitation Processes on Solid Surfaces. In Surface Photochemistry; John Wiley & Sons: Chichester, UK, 1996; pp. 1–18. [Google Scholar]
- Brody, P.S. Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3. Solid State Commun. 1973, 12, 673. [Google Scholar] [CrossRef]
- Pan, Y.; Wen, M. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 22055–22063. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Li, H.; Lu, J.; Meng, F.Y.; Ma, C.C.; Yan, Y.S.; Meng, M.J. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [Google Scholar] [CrossRef]
- Mohapatra, S.K.; Misra, M.; Mahajan, V.K.; Raja, K.S.J. Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. J. Phys. Chem. C 2007, 111, 8677–8685. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, L.B.; Hedhili, M.N.; Zhang, H.N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Qiao, J.L.; Gao, S.M. Fabrication of ZnxIn1−xS quantum Dot-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. Mater. Lett. 2014, 131, 354–357. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhang, L.Z. Controllable one-pot synthesis and enhanced visible light photocatalytic activity of tunable C−Cl-codoped TiO2 nanocrystals with high surface area. J. Phys. Chem. C 2010, 114, 940–946. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Hanaor, D.A.G. The effects of copper doping on photocatalytic activity at (101) planes of anantase TiO2: A theoretical study. Appl. Surf. Sci. 2016, 387, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Esmat, M.; El-Hosainy, H.; Tahawy, R.; Jevasuwan, W.; Tsunoji, N.; Fukata, N.; Ide, Y. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Appl. Catal. B-Envrion. 2021, 285, 119755. [Google Scholar] [CrossRef]
- Doustkhah, E.; Assadi, M.H.N.; Komaguchi, K.; Tsunoji, N.; Esmat, M.; Fukata, N.; Tomita, O.; Abe, R.; Ohtani, B.; Ide, Y. In situ blue titania via band shape engineering for exceptional solar H2 production in rutitle TiO2. Appl. Catal. B-Environ. 2021, 297, 120380. [Google Scholar] [CrossRef]
- Martynczuk, J.; Liang, F.Y.; Arnold, M.; Sepelak, V.; Feldhoff, A. Aluminum-doped perovskites as high-performance oxygen permeation materials. Chem. Mater. 2009, 21, 1586–1594. [Google Scholar] [CrossRef]
- Ren, Z.H.; Wu, M.J.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.Z.; Xie, Y.W.; Mai, J.Q.; et al. Electrostatic force-driven oxide heteroepitaxy for interface control. Adv. Mater. 2018, 30, 1707017. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ye, S.; Xie, H.C.; Zhu, J.; Shi, Q.; Ta, N.; Chen, R.T.; Gao, Y.Y.; An, H.Y.; Nie, W.; et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 2020, 32, 1906513. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.L.; Schultz, A.M.; Liu, X.; Salvador, P.A.; Rohrer, G.S. Visible light photochemical activity of heterostructured PbTiO3-TiO2 core-shell particles. Catal. Sci. Technol. 2012, 2, 1945–1952. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.Y.; Zong, L.L.; Wang, X.D.; Yang, J.J. BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochim. Acta 2013, 91, 30–35. [Google Scholar] [CrossRef]
- Yin, S.M.; Tian, H.; Ren, Z.H.; Wei, X.; Chao, C.Y.; Pei, J.Y.; Li, X.; Xu, G.; Shen, G.; Han, G.R. Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 6027–6030. [Google Scholar] [CrossRef]
- Yin, S.M.; Yuan, Y.F.; Guo, S.Y.; Ren, Z.H.; Han, G.R. Li+ ion induced three-dimensional aggregation growth of single-crystal perovskite octahedrons. Cryst. Eng. Commun. 2016, 18, 7849–7854. [Google Scholar] [CrossRef]
- Moon, J.; Kerchner, J.A.; LeBleu, J.; Morrone, A.A.; Adair, J.H. Oriented lead titanate film growth at lower temperatures by the sol-gel method on particle-seeded substrates. J. Am. Ceram. Soc. 1997, 80, 2613–2623. [Google Scholar] [CrossRef]
- Glazer, A.M.; Mabud, S.A.; Clarke, R. Powder profile refinement of lead zirconate titanate at several temperatures. I. PbZr0.9Ti0.1O3. Acta Cryst. 1978, B34, 1065–1067. [Google Scholar] [CrossRef]
- Fridkin, V.M. Ferroelectric Semiconductors; Consultants Bureau, a Division of Plenum Publishing Corporation: New York, NY, USA, 1980; Volume 15, p. 1392. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Liu, S.; Yuan, Y.; Guo, S.; Ren, Z. Octahedral Shaped PbTiO3-TiO2 Nanocomposites for High-Efficiency Photocatalytic Hydrogen Production. Nanomaterials 2021, 11, 2295. https://doi.org/10.3390/nano11092295
Yin S, Liu S, Yuan Y, Guo S, Ren Z. Octahedral Shaped PbTiO3-TiO2 Nanocomposites for High-Efficiency Photocatalytic Hydrogen Production. Nanomaterials. 2021; 11(9):2295. https://doi.org/10.3390/nano11092295
Chicago/Turabian StyleYin, Simin, Shun Liu, Yongfeng Yuan, Shaoyi Guo, and Zhaohui Ren. 2021. "Octahedral Shaped PbTiO3-TiO2 Nanocomposites for High-Efficiency Photocatalytic Hydrogen Production" Nanomaterials 11, no. 9: 2295. https://doi.org/10.3390/nano11092295
APA StyleYin, S., Liu, S., Yuan, Y., Guo, S., & Ren, Z. (2021). Octahedral Shaped PbTiO3-TiO2 Nanocomposites for High-Efficiency Photocatalytic Hydrogen Production. Nanomaterials, 11(9), 2295. https://doi.org/10.3390/nano11092295