Promoting the Selectivity of Pt/m-ZrO2 Ethanol Steam Reforming Catalysts with K and Rb Dopants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Activity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Li, X.; Gong, J. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chem. Rev. 2016, 116, 11529–11653. [Google Scholar] [CrossRef] [Green Version]
- Mattos, L.V.; Jacobs, G.; Davis, B.H.; Noronha, F.B. Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chem. Rev. 2012, 112, 4094–4123. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32, 3238–3247. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Rodrigues, A.E. Glycerol Reforming for Hydrogen Production: A Review. Chem. Eng. Tech. 2009, 32, 1463–1469. [Google Scholar] [CrossRef]
- Tran, N.H.; Kannangara, G.S.K. Conversion of glycerol to hydrogen rich gas. Chem. Soc. Rev. 2013, 42, 9454–9479. [Google Scholar] [CrossRef]
- Słowik, G.; Greluk, M.; Rotko, M.; Machocki, A. Evolution of the structure of unpromoted and potassium-promoted ceria-supported nickel catalysts in the steam reforming of ethanol. Appl. Catal. B Environ. 2018, 221, 490–509. [Google Scholar] [CrossRef]
- Contreras, J.L.; Salmones, J.; Colín-Luna, J.A.; Nuño, L.; Quintana, B.; Córdova, I.; Zeifert, B.; Tapia, C.; Fuentes, G.A. Catalysts for H2 production using the ethanol steam reforming (a review). Int. J. Hydrogen Energy 2014, 39, 18835–18853. [Google Scholar] [CrossRef]
- Ogo, S.; Sekine, Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review. Fuel Proc. Tech. 2020, 199, 106238. [Google Scholar] [CrossRef]
- Frusteri, F.; Freni, S.; Spadaro, L.; Chiodo, V.; Bonura, G.; Donato, S.; Cavallaro, S. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catal. Commun. 2004, 5, 611–615. [Google Scholar] [CrossRef]
- Song, H.; Ozkan, U.S. Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. J. Catal. 2009, 261, 66–74. [Google Scholar] [CrossRef]
- Ferencz, Z.; Varga, E.; Puskás, R.; Kónya, Z.; Baán, K.; Oszkó, A.; Erdőhelyi, A. Reforming of ethanol on Co/Al2O3 catalysts reduced at different temperatures. J. Catal. 2018, 358, 118–130. [Google Scholar] [CrossRef]
- Gaudillere, C.; González, J.J.; Chica, A.; Serra, J.M. YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol. Appl. Catal. A Gen. 2017, 538, 165–173. [Google Scholar] [CrossRef]
- Ángel-Soto, J.; Martínez-Rosales, M.; Ángel-Soto, P.; Zamorategui-Molina, A. Synthesis, characterization and catalytic application of Ni catalysts supported on alumina–zirconia mixed oxides. Bullet. Mat. Sci. 2017, 40, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.H.; Pecchi, G.; Fierro, J.L.G.; Osorio-Vargas, P. Enhanced bimetallic Rh-Ni supported catalysts on alumina doped with mixed lanthanum-cerium oxides for ethanol steam reforming. Molec. Catal. 2019, 469, 87–97. [Google Scholar] [CrossRef]
- Liguras, D.K.; Kondarides, D.I.; Verykios, X.E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B Environ. 2003, 43, 345–354. [Google Scholar] [CrossRef]
- Yamazaki, T.; Kikuchi, N.; Katoh, M.; Hirose, T.; Saito, H.; Yoshikawa, T.; Wada, M. Behavior of steam reforming reaction for bio-ethanol over Pt/ZrO2 catalysts. Appl. Catal. B Environ. 2010, 99, 81–88. [Google Scholar] [CrossRef]
- De Lima, S.M.; Silva, A.M.; da Cruz, I.O.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catal. Today 2008, 138, 162–168. [Google Scholar] [CrossRef]
- Bilal, M.; Jackson, S.D. Ethanol steam reforming over Rh and Pt catalysts: Effect of temperature and catalyst deactivation. Catal. Sci. Technol. 2013, 3, 754–766. [Google Scholar] [CrossRef]
- De Lima, S.M.; Silva, A.M.; Graham, U.M.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: Reaction mechanism and deactivation. Appl. Catal. A Gen. 2009, 352, 95–113. [Google Scholar] [CrossRef]
- Jacobs, G.; Davis, B.H. In situ DRIFTS investigation of the steam reforming of methanol over Pt/ceria. Appl. Catal. A Gen. 2005, 285, 43–49. [Google Scholar] [CrossRef]
- Ciambelli, P.; Palma, V.; Ruggiero, A. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts. Appl. Catal. B Environ. 2010, 96, 18–27. [Google Scholar] [CrossRef]
- He, Z.; Yang, M.; Wang, X.; Zhao, Z.; Duan, A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming. Catal. Today 2012, 194, 2–8. [Google Scholar] [CrossRef]
- Jacobs, G.; Keogh, R.A.; Davis, B.H. Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. J. Catal. 2007, 245, 326–337. [Google Scholar] [CrossRef]
- Shido, T.; Iwasawa, Y. Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2. J. Catal. 1993, 141, 71–81. [Google Scholar] [CrossRef]
- Jacobs, G.; Graham, U.M.; Chenu, E.; Patterson, P.M.; Dozier, A.; Davis, B.H. Low-temperature water–gas shift: Impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design. J. Catal. 2005, 229, 499–512. [Google Scholar] [CrossRef]
- Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J.C.; El Fallah, J.; Hilaire, L.; Le Normand, F.; Quéméré, E.; et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc. Faraday Trans. 1991, 87, 1601–1609. [Google Scholar] [CrossRef]
- Grzybek, G.; Greluk, M.; Indyka, P.; Góra-Marek, K.; Legutko, P.; Słowik, G.; Turczyniak-Surdacka, S.; Rotko, M.; Sojka, Z.; Kotarba, A. Cobalt catalyst for steam reforming of ethanol–Insights into the promotional role of potassium. Int. J. Hydrogen Energy 2020, 45, 22658–22673. [Google Scholar] [CrossRef]
- Grzybek, G.; Góra-Marek, K.; Patulski, P.; Greluk, M.; Rotko, M.; Słowik, G.; Kotarba, A. Optimization of the potassium promotion of the Co|α-Al2O3 catalyst for the effective hydrogen production via ethanol steam reforming. Appl. Catal. A Gen. 2021, 614, 118051. [Google Scholar] [CrossRef]
- Llorca, J.; Homs, N.S.; Sales, J.; Fierro, J.-L.G.; Ramírez de la Piscina, P. Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. J. Catal. 2004, 222, 470–480. [Google Scholar] [CrossRef]
- Espinal, R.; Taboada, E.; Molins, E.; Chimentao, R.J.; Medina, F.; Llorca, J. Cobalt hydrotalcites as catalysts for bioethanol steam reforming. The promoting effect of potassium on catalyst activity and long-term stability. Appl. Catal. B Environ. 2012, 127, 59–67. [Google Scholar] [CrossRef]
- Ogo, S.; Shimizu, T.; Nakazawa, Y.; Mukawa, K.; Mukai, D.; Sekine, Y. Steam reforming of ethanol over K promoted Co catalyst. Appl. Catal. A Gen. 2015, 495, 30–38. [Google Scholar] [CrossRef]
- Yoo, S.; Park, S.; Song, J.H.; Kim, D.H. Hydrogen production by the steam reforming of ethanol over K-promoted Co/Al2O3–CaO xerogel catalysts. Molec. Catal. 2020, 491, 110980. [Google Scholar] [CrossRef]
- Frusteri, F.; Freni, S.; Chiodo, V.; Spadaro, L.; Di Blasi, O.; Bonura, G.; Cavallaro, S. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: Hydrogen production for MC fuel cell. Appl. Catal. A Gen. 2004, 270, 1–7. [Google Scholar] [CrossRef]
- Dömök, M.; Baán, K.; Kecskés, T.; Erdőhelyi, A. Promoting Mechanism of Potassium in the Reforming of Ethanol on Pt/Al2O3 Catalyst. Catal. Lett. 2008, 126, 49–57. [Google Scholar] [CrossRef]
- Frusteri, F.; Freni, S.; Chiodo, V.; Spadaro, L.; Bonura, G.; Cavallaro, S. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. J. Power Sources 2004, 132, 139–144. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Kumar, A.; Prasad, R.; Upadhyay, S.N. Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew. Sustain. Energy Rev. 2017, 74, 89–103. [Google Scholar] [CrossRef]
- Greluk, M.; Rybak, P.; Słowik, G.; Rotko, M.; Machocki, A. Comparative study on steam and oxidative steam reforming of ethanol over 2KCo/ZrO2 catalyst. Catal. Today 2015, 242, 50–59. [Google Scholar] [CrossRef]
- Banach, B.; Machocki, A. Effect of potassium addition on a long term performance of Co–ZnO–Al2O3 catalysts in the low-temperature steam reforming of ethanol: Co-precipitation vs citrate method of catalysts synthesis. Appl. Catal. A Gen. 2015, 505, 173–182. [Google Scholar] [CrossRef]
- Słowik, G.; Gawryszuk-Rżysko, A.; Greluk, M.; Machocki, A. Estimation of Average Crystallites Size of Active Phase in Ceria-Supported Cobalt-Based Catalysts by Hydrogen Chemisorption vs TEM and XRD Methods. Catal. Lett. 2016, 146, 2173–2184. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, M.; Watson, C.D.; Jacobs, G. Sodium doping of Pt/m-ZrO2 promotes C–C scission and decarboxylation during ethanol steam reforming. Int. J. Hydrogen Energy 2020, 45, 18490–18501. [Google Scholar] [CrossRef]
- Martinelli, M.; Castro, J.D.; Alhraki, N.; Matamoros, M.E.; Kropf, A.J.; Cronauer, D.C.; Jacobs, G. Effect of sodium loading on Pt/ZrO2 during ethanol steam reforming. Appl. Catal. A Gen. 2021, 610, 117947. [Google Scholar] [CrossRef]
- Roh, H.-S.; Platon, A.; Wang, Y.; King, D.L. Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2–ZrO2 catalysts. Catal. Lett. 2006, 110, 1–6. [Google Scholar] [CrossRef]
- Ramaker, D.E.; Mojet, B.L.; Garriga Oostenbrink, M.T.; Miller, J.T.; Koningsberger, D.C. Contribution of shape resonance and Pt–H EXAFS in the Pt L2,3 X-ray absorption edges of supported Pt particles: Application and consequences for catalyst characterization. Phys. Chem. Chem. Phys. 1999, 1, 2293–2302. [Google Scholar] [CrossRef]
- Ressler, T. WinXAS: A Program for X-ray Absorption Spectroscopy Data Analysis under MS-Windows. J. Synchrotron Rad. 1998, 5, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Ravel, B. ATOMS: Crystallography for the X-ray absorption spectroscopist. J. Synchrotron Radiat. 2001, 8, 314–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newville, M.; Ravel, B.; Haskel, D.; Rehr, J.J.; Stern, E.A.; Yacoby, Y. Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B Cond. Matt. 1995, 208–209, 154–156. [Google Scholar] [CrossRef]
- Martinelli, M.; Jacobs, G.; Graham, U.M.; Shafer, W.D.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L.; Khalid, S.; Visconti, C.G.; Lietti, L.; et al. Water-gas shift: Characterization and testing of nanoscale YSZ supported Pt catalysts. Appl. Catal. A Gen. 2015, 497, 184–197. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.D.; Martinelli, M.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L.; Jacobs, G. Low temperature water-gas shift: Optimization of K loading on Pt/m-ZrO2 for enhancing CO conversion. Appl. Catal. A Gen. 2020, 598, 117572. [Google Scholar] [CrossRef]
- Watson, C.D.; Martinelli, M.; Cronauer, D.C.; Kropf, A.J.; Jacobs, G. Low Temperature Water-Gas Shift: Enhancing Stability through Optimizing Rb Loading on Pt/ZrO2. Catalysts 2021, 11, 210. [Google Scholar] [CrossRef]
- Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059–4063. [Google Scholar] [CrossRef]
- Marinkovic, N.S.; Sasaki, K.; Azic, R.R. Nanoparticle size evaluation of catalysts by EXAFS: Advantages and limitations. Zast. Mater. 2016, 57, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Chenu, E.; Jacobs, G.; Crawford, A.C.; Keogh, R.A.; Patterson, P.M.; Sparks, D.E.; Davis, B.H. Water-gas shift: An examination of Pt promoted MgO and tetragonal and monoclinic ZrO2 by in situ DRIFTS. Appl. Catal. B Environ. 2005, 59, 45–56. [Google Scholar] [CrossRef]
- Pigos, J.M.; Brooks, C.J.; Jacobs, G.; Davis, B.H. Low temperature water-gas shift: Characterization of Pt-based ZrO2 catalyst promoted with Na discovered by combinatorial methods. Appl. Catal. A Gen. 2007, 319, 47–57. [Google Scholar] [CrossRef]
- Yee, A.; Morrison, S.J.; Idriss, H. A Study of Ethanol Reactions over Pt/CeO2 by Temperature-Programmed Desorption and in Situ FT-IR Spectroscopy: Evidence of Benzene Formation. J. Catal. 2000, 191, 30–45. [Google Scholar] [CrossRef]
- Yee, A.; Morrison, S.J.; Idriss, H. A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed Desorption, and In Situ FT-IR. J. Catal. 1999, 186, 279–295. [Google Scholar] [CrossRef]
- Mattos, L.V.; Noronha, F.B. Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: The effect of the reaction conditions and reaction mechanism. J. Catal. 2005, 233, 453–463. [Google Scholar] [CrossRef]
- Martinelli, M.; Jacobs, G.; Graham, U.M.; Davis, B.H. Methanol Steam Reforming: Na Doping of Pt/YSZ Provides Fine Tuning of Selectivity. Catalysts 2017, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Binet, C.; Daturi, M.; Lavalley, J.-C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Martinelli, M.; Alhraki, N.; Castro, J.D.; Matamoros, M.E.; Jacobs, G. New Dimensions in Production and Utilization of Hydrogen, 1st ed.; Nanda, S., Vo, D.V., Nguyen-Tri, P., Eds.; Elsevier International Publishing: Amsterdam, The Netherlands, 2020; pp. 143–160. [Google Scholar]
- Evin, H.N.; Jacobs, G.; Ruiz-Martinez, J.; Graham, U.M.; Dozier, A.; Thomas, G.; Davis, B.H. Low Temperature Water–Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C–H Bonds over Pt/ceria Catalyst. Catal. Lett. 2008, 122, 9–19. [Google Scholar] [CrossRef]
- Evin, H.N.; Jacobs, G.; Ruiz-Martinez, J.; Thomas, G.A.; Davis, B.H. Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem. Catal. Lett. 2008, 120, 166–178. [Google Scholar] [CrossRef]
- Allen, L.C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Amer. Chem. Soc. 1989, 111, 9003–9014. [Google Scholar] [CrossRef]
- Pigos, J.M.; Brooks, C.J.; Jacobs, G.; Davis, B.H. Low temperature water–gas shift: The effect of alkali doping on the CH bond of formate over Pt/ZrO2 catalysts. Appl. Catal. A Gen. 2007, 328, 14–26. [Google Scholar] [CrossRef]
- Martinelli, M.; Jacobs, G.; Shafer, W.D.; Davis, B.H. Effect of alkali on CH bond scission over Pt/YSZ catalyst during water-gas-shift, steam-assisted formic acid decomposition and methanol steam reforming. Catal. Today 2017, 291, 29–35. [Google Scholar] [CrossRef]
- Menacherry, P.V.; Haller, G.L. Electronic effects and effects of particle morphology in n-hexane conversion over zeolite-supported platinum catalysts. J. Catal. 1998, 177, 175–188. [Google Scholar] [CrossRef]
- Fukunaga, T.; Ponec, V. On the role of additives to platinum catalysts for reforming reactions. Appl. Catal. A Gen. 1997, 154, 207–219. [Google Scholar] [CrossRef]
- Bazin, D.; Sayers, D.; Rehr, J.J.; Mottet, C. Numerical Simulation of the Platinum LIII Edge White Line Relative to Nanometer Scale Clusters. J. Phys. Chem. B 1997, 101, 5332–5336. [Google Scholar] [CrossRef]
- Dai, Y.; Gorey, T.J.; Anderson, S.L.; Lee, S.; Lee, S.; Seifert, S.; Winans, R.E. Inherent Size Effects on XANES of Nanometer Metal Clusters: Size-Selected Platinum Clusters on Silica. J. Phys. Chem. C 2017, 121, 361–374. [Google Scholar] [CrossRef]
- Haller, G.L. New catalytic concepts from new materials: Understanding catalysis from a fundamental perspective, past, present, and future. J. Catal. 2003, 216, 12–22. [Google Scholar] [CrossRef]
- Mojet, B.L.; Miller, J.T.; Ramaker, D.E.; Koningsberger, D.C. A new model describing the metal-support interaction in noble metal catalysts. J. Catal. 1999, 186, 373–386. [Google Scholar] [CrossRef] [Green Version]
Sample ID | As (BET) (m2/g) | Vp (BJH Des) (cm3/g) | Dp (BJH Des) (Å) | Est. Pt Diam (nm) | Est. % Pt Disp. (%) |
---|---|---|---|---|---|
Pt/ZrO2 (K-series) | 82.8 | 0.276 | 103 | 1.0 */0.92 ** | 88 |
0.85% K-Pt/ZrO2 | 78.3 | 0.260 | 101 | 1.2 */1.1 ** | 82 |
1.70% K-Pt/ZrO2 | 72.2 | 0.249 | 100 | 1.3 */1.2 ** | 79 |
2.55% K-Pt/ZrO2 | 68.4 | 0.245 | 103 | 2.7 */2.6 ** | 47 |
3.40% K-Pt/ZrO2 | 59.6 | 0.219 | 105 | 3.0 */3.0 ** | 42 |
4.25% K-Pt/ZrO2 | 53.8 | 0.200 | 109 | 3.6 */3.6 ** | 35 |
8.50% K-Pt/ZrO2 | 34.7 | 0.139 | 123 | - | - |
Pt/ZrO2 (Rb-series) | 89.7 | 0.260 | 95 | 0.8 */0.72 ** | 94 |
0.55% Rb-Pt/ZrO2 | 87.9 | 0.268 | 96 | - | - |
0.93% Rb-Pt/ZrO2 | 91.6 | 0.275 | 93 | 0.86 */0.78 ** | 92 |
1.86% Rb-Pt/ZrO2 | 88.7 | 0.262 | 94 | 1.0 */0.93 ** | 87 |
2.79% Rb-Pt/ZrO2 | 86.7 | 0.260 | 93 | 1.1 */0.99 ** | 85 |
4.65% Rb-Pt/ZrO2 | 72.3 | 0.235 | 95 | 1.3 */1.2 ** | 77 |
9.29% Rb-Pt/ZrO2 | 58.2 | 0.202 | 102 | 2.0 */1.9 ** | 56 |
Bands | 0% K | 0.85% K | 2.55% K | 4.25% K | 0% Rb | 0.93% Rb | 4.65% Rb | 9.29% Rb |
---|---|---|---|---|---|---|---|---|
50 °C | ||||||||
ν(CO) ethoxy | 1100, 1070, 1056 | 1092, (1065), 1051 | 1103, 1058 | 1107, (1067) 1056 | 1101, 1072, 1057 | 1099, (1067), 1055 | 1098, 1056 | 1105, 1057 |
ν(CH) ethox/acet | 2970, 2928, 2897, 2868 | 2970, 2927, (2894), 2872 | 2969, 2926, (2897), 2876 | (2977), 2965, (2934, 2881), 2868 | 2973, 2929, (2896), 2873, (2854) | 2973, 2929, (2898), 2873, (2856) | 2973, 2931, 2898, 2879, 2858 | (2989), 2970, (2955), 2932, 2902, 2880, 2868 |
ρ(CH3) ethoxy | 1156, 1116 | 1148, 1124 | (1147, 1125) | - | 1154, (1133), 1118 | (1163, 1150, 1128–1113) | - | - |
νa(OCO) acetate | 1562 | 1564, (1507) | 1577, (1519) | 1567–1513 | 1564 | 1560 | 1572, (1549–1512) | 1578 |
νs(OCO) acetate | (1467), 1433 | 1467, (1431), 1417 | (1490, 1464) 1412 | 1460 | (1470), 1433 | (1487) 1474, 1443, 1428 | 1472, (1445), 1408 | - |
δs(CH3) acetate | 1381, (1357), 1344, (1274) | 1376, (1351) 1335, (1314–1269) | 1377, 1358, (1340, 1280) | 1358, 1310, 1271 | 1381, (1358, 1343, 1276) | 1381, 1357, 1343, 1327–1295, 1275 | (1372), 1360, (1339) | 1355 |
ν(CO) Pt-CO | 2055, (2037), 2012, 1990–1810 | 2051, 2030, (2018–1870) | 1930 (2080–1800) | - | 2051, (2032), 2015, 1978–1870 | (2053, 2046–1985, 1985–1840), 1951 | (2063–1985, 1963), 1927, (1950–1830) | - |
200 °C | ||||||||
νa(OCO) acetate | 1556, (1470) | (1569), 1557, (1543–1508), 1467 | 1580, (1549, 1523, 1508), 1471 | 1580, (1550–1444) | (1566), 1554, (1470) | 1556, (1525–1470) | 1633, 1579, (1549, 1533–1465) | 1580 |
νs(OCO) acetate | 1439 | 1437, 1380 | 1408 | 1422, 1408 | 1439 | 1437, (1383) | 1404 | 1437, 1404 |
δs(CH3) acetate | 1346 | 1332, (1303), 1273 | (1351), 1334, (1297) | (1350), (1330) | 1347 | 1339, (1330-1312, 1297, 1274) | (1328), 1300 | 1355, 1339, (1335–1267) |
ν(CH) acetate | 2965, 2937, 2876, 2862 | 3000, 2984, 2966, 2931, 2872 | 2971, 2928, (2897, 2878, 2858) | (2965), 2937, 2869 | 2965, 2936, (2917–2892), 2877 | 2965, 2937, (2920–2905, 2881 | 2986, 2967, 2927 | (2997), 2965, (2935), 2925, (2904, 2886–2860) |
500 °C | ||||||||
νa(OCO) carbonate | 1556 | 1622, 1576–1490 | 1620, (1568–1492) | (1604), 1551, (1530, 1519, 1503) | 1550–1500 | 1580–1495, 1556 | 1627, (1581), (1550–1430) | 1608, (1592, 1566, 1550) |
νs(OCO) carbonate | (1470), 1439 | 1454 | (1468) | (1463, 1445, 1425) | 1473, 1442 | 1490-1410, 1444 | (1550–1430) | 1439 |
νs(OCO) carbonate | (1405–1367) | 1370, (1342) 1297, (1276–1225) | (1386, 1353) 1307 | 1400-1355, 1329, (1300–1200) | 1395, 1363 | (1373), 1340, (1300), 1271, (1256) | (1365, 1333, 1291) | (1355), 1317 |
Catalyst | Conv. C2H5OH (%) | H2 Yield (%) | C Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | CO | C2H6 | C2H4 | C3H6 | CH3CHO | |||
2% Pt/ZrO2 | 86.91 | 14.26 | 45.20 | 28.5 | 21.16 | 0.92 | 0.39 | 0.34 | 3.49 |
0.85% K-2% Pt/ZrO2 | 60.01 | 13.84 | 46.86 | 40.59 | 11.14 | 0.26 | - | - | 1.14 |
2.55% K-2% Pt/ZrO2 | 47.02 | 12.66 | 48.75 | 50.72 | - | - | - | - | 0.76 |
4.55% K-2% Pt/ZrO2 | 27.30 | 3.17 | 49.48 | 49.08 | - | - | - | - | 1.42 |
0.93% Rb-2% Pt/ ZrO2 | 59.60 | 13.65 | 46.81 | 35.78 | 15.55 | 0.31 | 0.11 | - | 1.43 |
4.25% Rb-2% Pt/ZrO2 | 38.97 | 8.70 | 53.56 | 46.27 | - | - | - | - | 0.16 |
9.29% Rb-2% Pt/ZrO2 | 11.19 | 0.18 | 12.18 | 87.81 | - | - | - | - | - |
Catalyst | Conv. C2H5OH (%) | H2 Yield (%) | C Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | CO | C2H6 | C2H4 | C3H6 | CH3CHO | |||
2% Pt/ZrO2 | 86.91 | 14.26 | 45.20 | 28.5 | 21.16 | 0.92 | 0.39 | 0.34 | 3.49 |
58.55 | 8.53 | 47.46 | 14.86 | 28.37 | 0.37 | 0.57 | 0.36 | 7.98 | |
48.41 | 4.81 | 55.87 | 11.56 | 22.07 | 0.24 | 0.49 | - | 9.73 | |
30.89 | 3.05 | 60.79 | 7.13 | 19.70 | - | 0.48 | - | 11.81 |
Catalyst | Conv. C2H5OH (%) | H2 Yield (%) | C Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | CO | C2H6 | C2H4 | C3H6 | CH3CHO | |||
2% Pt/ZrO2 | 58.55 | 8.53 | 47.46 | 14.86 | 28.37 | 0.37 | 0.57 | 0.36 | 7.98 |
0.85% K-2% Pt/ZrO2 | 60.01 | 13.84 | 46.86 | 40.59 | 11.14 | 0.26 | - | - | 1.14 |
0.93% Rb-2% Pt/ ZrO2 | 59.60 | 13.65 | 46.81 | 35.78 | 15.55 | 0.31 | 0.11 | - | 1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinelli, M.; Garcia, R.; Watson, C.D.; Cronauer, D.C.; Kropf, A.J.; Jacobs, G. Promoting the Selectivity of Pt/m-ZrO2 Ethanol Steam Reforming Catalysts with K and Rb Dopants. Nanomaterials 2021, 11, 2233. https://doi.org/10.3390/nano11092233
Martinelli M, Garcia R, Watson CD, Cronauer DC, Kropf AJ, Jacobs G. Promoting the Selectivity of Pt/m-ZrO2 Ethanol Steam Reforming Catalysts with K and Rb Dopants. Nanomaterials. 2021; 11(9):2233. https://doi.org/10.3390/nano11092233
Chicago/Turabian StyleMartinelli, Michela, Richard Garcia, Caleb D. Watson, Donald C. Cronauer, A. Jeremy Kropf, and Gary Jacobs. 2021. "Promoting the Selectivity of Pt/m-ZrO2 Ethanol Steam Reforming Catalysts with K and Rb Dopants" Nanomaterials 11, no. 9: 2233. https://doi.org/10.3390/nano11092233
APA StyleMartinelli, M., Garcia, R., Watson, C. D., Cronauer, D. C., Kropf, A. J., & Jacobs, G. (2021). Promoting the Selectivity of Pt/m-ZrO2 Ethanol Steam Reforming Catalysts with K and Rb Dopants. Nanomaterials, 11(9), 2233. https://doi.org/10.3390/nano11092233