Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence on Mobility Equivalent Particle Size
3.2. TEM Imaging of Gas-Treated Particles and the Assesment of the Fractal Dimension
3.3. Surface Analysis by APES
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APES | Aerosol Photoemission Spectroscopy |
TEM | Transmission Electron Microscopy |
SMPS | Scanning Mobility Particle Sizer |
DMA | Differential Mobility Analyzer; |
SDG | Spark Discharge Generator |
PSD | Particle size distribution |
N | Soft X-ray neutralizer |
RT | Room temperature |
eWF | Electron Work Function |
lpm | liters per minute |
FTIR | Fourier-Transform Infrared Spectroscopy; |
MS | Mass spectrometry |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
UHV | Ultra High Vacuum |
Symbols | |
Q | Gas flow rate |
x | Particle size |
Df | Fractal dimension |
Y | Yield |
C | Capacitance |
c | Emission constant |
hν | Photon energy |
ΔG | Gibbs free energy |
Φ | Electron Work Function |
k | Prefactor |
References
- Schwyn, S.; Garwin, E.; Schmidt-Ott, A. Aerosol generation by spark discharge. J. Aerosol Sci. 1988, 19, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, L.; Meuller, B.O.; Messing, M.E. Investigations of initial particle stages during spark discharge. J. Phys. D Appl. Phys. 2015, 48, 314012. [Google Scholar] [CrossRef]
- Lehtinen, K.E.J.; Zachariah, M.R. Energy accumulation in nanoparticle collision and coalescence processes. J. Aerosol Sci. 2002, 33, 357–368. [Google Scholar] [CrossRef]
- Meuller, B.O.; Messing, M.E.; Engberg, D.L.J.; Jansson, A.M.; Johansson, L.I.M.; Norlén, S.M.; Tureson, N.; Deppert, K. Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270. [Google Scholar] [CrossRef]
- Pfeiffer, T.V.; Feng, J.; Schmidt-Ott, A. New developments in spark production of nanoparticles. Adv. Powder Technol. 2014, 25, 56–70. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Pratsinis, S.E. The structure of agglomerates consisting of polydisperse particles. Aerosol Sci. Technol. 2012, 46, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Artelt, C.; Schmid, H.J.; Peukert, W. On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. J. Aerosol Sci. 2003, 34, 511–534. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Kim, S.C.; Wang, J.; Shin, W.G.; Fissan, H.; Pui, D.Y.H. Measurement of metal nanoparticle agglomerates generated by spark discharge using the universal nanoparticle analyzer (UNPA). Aerosol Sci. Technol. 2012, 46, 333–346. [Google Scholar] [CrossRef]
- Svensson, C.R.; Ludvigsson, L.; Meuller, B.O.; Eggersdorfer, M.L.; Deppert, K.; Bohgard, M.; Pagels, J.H.; Messing, M.E.; Rissler, J. Characteristics of airborne gold aggregates generated by spark discharge and high temperature evaporation furnace: Mass-mobility relationship and surface area. J. Aerosol Sci. 2015, 87, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Olynick, D.L.; Gibson, J.M.; Averback, R.S. Trace oxygen effects on copper nanoparticle size and morphology. Appl. Phys. Lett. 1996, 68, 343–345. [Google Scholar] [CrossRef]
- Hallberg, R.T.; Ludvigsson, L.; Preger, C.; Meuller, B.O.; Dick, K.A.; Messing, M.E. Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation. Aerosol Sci. Technol. 2018, 52, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Sabat, K.C.; Rajput, P.; Paramguru, R.K.; Bhoi, B.; Mishra, B.K. Reduction of oxide minerals by hydrogen plasma: An overview. Plasma Chem. Plasma Process. 2014, 34, 1–23. [Google Scholar] [CrossRef]
- Yang, Y.; Song, B.; Ke, X.; Xu, F.; Bozhilov, K.N.; Hu, L.; Shahbazian-Yassar, R.; Zachariah, M.R. Aerosol Synthesis of High Entropy Alloy Nanoparticles. Langmuir 2020, 36, 1985–1992. [Google Scholar] [CrossRef]
- Di, L.; Zhang, X.; Xu, Z. Preparation of copper nanoparticles using dielectric barrier discharge at atmospheric pressure and its mechanism. Plasma Sci. Technol. 2014, 16, 41–44. [Google Scholar] [CrossRef]
- Volkov, I.A.; Simonenko, N.P.; Efimov, A.A.; Simonenko, T.L.; Vlasov, I.S.; Borisov, V.I.; Arsenov, P.V.; Lebedinskii, Y.Y.; Markeev, A.M.; Lizunova, A.A.; et al. Platinum based nanoparticles produced by a pulsed spark discharge as a promising material for gas sensors. Appl. Sci. 2021, 11, 1–20. [Google Scholar] [CrossRef]
- Etxebarria, A.; Koch, S.L.; Bondarchuk, O.; Passerini, S.; Teobaldi, G.; Muñoz-Márquez, M.Á. Work Function Evolution in Li Anode Processing. Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanoparticle Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Röhrbein, J.; Weber, A.P. A system for on-line characterization of gas-borne particle surface properties based on their photoemission. J. Aerosol Sci. 2018, 120, 82–91. [Google Scholar] [CrossRef]
- Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; et al. Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment. Nano Lett. 2019, 19, 477–481. [Google Scholar] [CrossRef]
- Chen, C.; Yeom, J.; Choe, C.; Liu, G.; Gao, Y.; Zhang, Z.; Zhang, B.; Kim, D.; Suganuma, K. Necking growth and mechanical properties of sintered Ag particles with different shapes under air and N2 atmosphere. J. Mater. Sci. 2019, 54, 13344–13357. [Google Scholar] [CrossRef]
- Torun, B.; Kunze, C.; Zhang, C.; Kühne, T.D.; Grundmeier, G. Study of water adsorption and capillary bridge formation for SiO2 nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up. Phys. Chem. Chem. Phys. 2014, 16, 7377–7384. [Google Scholar] [CrossRef] [Green Version]
- Norton, P.R.; Richards, P.J. The energetics of hydrogen adsorption on platinum is of interest from several viewpoints. For a given metal-gas system there is only poor agreement between different publications in either form or magnitude for the heat of adsorption-coverage relations. Surf. Sci. 1974, 44, 129–140. [Google Scholar] [CrossRef]
- Candy, J.P.; Fouilloux, P.; Renouprez, A.J. Hydrogen adsorption on platinum catalysts. Quantitative determination of the various species population. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1980, 76, 616–629. [Google Scholar] [CrossRef]
- Brennan, D.; Hayward, D.O.; Trapnell, B.M.W. The calorimetric determination of the heats of adsorption of oxygen on evaporated metal films. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1960, 256, 81–105. [Google Scholar] [CrossRef]
- Weber, A.P.; Friedlander, S.K. In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J. Aerosol Sci. 1997, 28, 179–192. [Google Scholar] [CrossRef]
- Seipenbusch, M.; Weber, A.P.; Schiel, A.; Kasper, G. Influence of the gas atmosphere on restructuring and sintering kinetics of nickel and platinum aerosol nanoparticle agglomerates. J. Aerosol Sci. 2003, 34, 1699–1709. [Google Scholar] [CrossRef]
- Zhou, L.; Zachariah, M.R. Size resolved particle work function measurement of free nanoparticles: Aggregates vs. spheres. Chem. Phys. Lett. 2012, 525–526, 77–81. [Google Scholar] [CrossRef]
- Rump, B.S.; Gehman, B.L. Work function measurements of nickel, molybdenum, and tungsten in a cesium-hydrogen atmosphere. J. Appl. Phys. 1965, 36, 2347–2352. [Google Scholar] [CrossRef]
- Sachtler, W.M.H. Work function and electrical conductivity of hydrogen covered nickel films. The effect of contamination. J. Chem. Phys. 1956, 25, 751–752. [Google Scholar] [CrossRef]
- Derry, G.N.; Kern, M.E.; Worth, E.H. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A Vac. Surf. Film. 2015, 33, 060801. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszok, V.; Bierwirth, M.; Weber, A.P. Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties. Nanomaterials 2021, 11, 2266. https://doi.org/10.3390/nano11092266
Olszok V, Bierwirth M, Weber AP. Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties. Nanomaterials. 2021; 11(9):2266. https://doi.org/10.3390/nano11092266
Chicago/Turabian StyleOlszok, Vinzent, Malte Bierwirth, and Alfred P. Weber. 2021. "Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties" Nanomaterials 11, no. 9: 2266. https://doi.org/10.3390/nano11092266
APA StyleOlszok, V., Bierwirth, M., & Weber, A. P. (2021). Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties. Nanomaterials, 11(9), 2266. https://doi.org/10.3390/nano11092266