Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MoP@NPC
2.2. Physical Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Feng, Q.; Liu, W.; Li, Q.; Wang, Y.; Liu, B.; Zheng, L.; Wang, W.; Huang, L.; Chen, L.; et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Xiang, F.; Zheng, Q.; Ma, X.; Huo, Y.; Xie, F.; Xu, C.; Lin, D.; Hu, J. Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids. Chin. J. Catal. 2021, 42, 980–993. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, E.; Sun, G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin. J. Catal. 2020, 41, 574–591. [Google Scholar] [CrossRef]
- Ren, H.; Sun, X.; Du, C.; Zhao, J.; Liu, D.; Fang, W.; Kumar, S.; Chua, R.; Meng, S.; Kidkhunthod, P.; et al. Amorphous Fe-Ni-P-B-O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano 2019, 13, 12969–12979. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wu, M.; Li, G. Rambutan-like CoP@Mo-Co-O hollow microspheres for efficient hydrogen evolution reaction in alkaline solution. Chin. J. Catal. 2020, 41, 691–697. [Google Scholar] [CrossRef]
- Song, M.; Zhang, Z.; Li, Q.; Jin, W.; Wu, Z.; Fu, G.; Liu, X. Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production via urea electrolysis. J. Mater. Chem. A 2019, 7, 3697–3703. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, T.; Cheng, C.; Zhao, X.; Liu, E.; Yang, J. Engineering Ru(IV) charge density in Ru@RuO2 core-shell electrocatalyst via tensile strain for efficient oxygen evolution in acidic media. Chin. J. Catal. 2020, 41, 1161–1167. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Liu, X.; Liu, W.; Li, Z.; Dong, J.; Chen, W.; Yan, W.; Yao, T.; Duan, X.; et al. Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. J. Angew. Chem. Int. Ed. 2018, 5, 9495–9500. [Google Scholar] [CrossRef]
- Wu, Z.; Song, M.; Zhang, Z.; Wang, J.; Liu, X. Various strategies to tune the electrocatalytic performance of molyb-denum phosphide supported on reduced graphene oxide for hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 536, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Lan, C.; Chen, B.; Wang, F.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329. [Google Scholar] [CrossRef]
- Cong, M.; Sun, D.; Zhang, L.; Ding, X. In situ assembly of metal-organic framework-derived N-doped carbon/Co/CoP catalysts on carbon paper for water splitting in alkaline electrolytes. Chin. J. Catal. 2020, 41, 242–248. [Google Scholar] [CrossRef]
- Lao, J.; Li, D.; Jiang, C.; Luo, R.; Peng, H.; Qi, R.; Lin, H.; Huang, R.; Waterhouse, G.I.; Luo, C. Efficient overall water splitting using nickel boride-based electrocatalysts. Int. J. Hydrog. Energy 2020, 45, 28616–28625. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Zhu, Y.-R.; Yan, X.-T.; Cao, Y.-N.; Li, J.; Dong, B.; Yang, M.; Li, Q.-Z.; Liu, C.-G.; Chai, Y.-M. Hierarchical CoSeS nanostructures assisted by Nb doping for enhanced hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 431–438. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Liu, Y.; Xu, L.; Qin, J.; Lei, Y.; Tang, Y. NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting. J. Energy Chem. 2020, 50, 395–401. [Google Scholar] [CrossRef]
- Geng, S.; Liu, Y.; Yu, Y.S.; Yang, W.; Li, H. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2019, 13, 121–126. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.; Jung, S.M.; Hwang, J.; Kim, D.Y.; Lee, N.; Kim, K.S.; Kwon, H.; Kim, Y.T.; Han, J.W.; et al. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.; David, T.; Lars, H.; Daniel, S.; Ulf-Peter, A. Fe/Co and Ni/Co-pentlandite type electro-catalysts for the hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 1360–1369. [Google Scholar]
- Wan, Z.; He, Q.; Chen, J.; Isimjan, T.T.; Wang, B.; Yang, X. Dissolution-regrowth of hierarchical Fe-Dy oxide modulates the electronic structure of nickel-organic frameworks as highly active and stable water splitting electrocatalysts. Chin. J. Catal. 2020, 41, 1745–1753. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, X.; Sun, X.; Zhang, Y.; Wei, Q.; Liu, X.; Wu, D. In situ evolution of surface Co2CrO4 to CoOOH/CrOOH by electrochemical method: Toward boosting electrocatalytic water oxidation. Chin. J. Catal. 2021, 42, 1096–1101. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, T.; Chen, N.; Jia, Y.; Cai, R.; Theis, W.; Yang, X.; Xia, Y.; Yang, D.; Yao, X. Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. J. Mater. Chem. A 2018, 6, 18417–18425. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhao, Y.; Jin, W.; Jia, B.; Wang, J.; Ma, T. Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications. Adv. Funct. Mater. 2020, 31, 2009070. [Google Scholar] [CrossRef]
- Li, Z.; Ge, R.; Su, J.; Chen, L. Recent Progress in Low Pt Content Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. Interfaces 2020, 7, 2000396. [Google Scholar] [CrossRef]
- Gu, M.; Jia, Q.; Zhu, Y.; Xu, L.; Tang, Y. In Situ Growth of Ultrafine Pt Nanoparticles onto Hierarchical Co3O4 Nanosheet-Assembled Microflowers for Efficient Electrocatalytic Hydrogen Evolution. Chem. Eur. J. 2020, 26, 15103–15108. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Song, H.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water Dissociation Kinetic-Oriented Design of Nickel Sulfides via Tailored Dual Sites for Efficient Alkaline Hydrogen Evolution. Adv. Funct. Mater. 2021, 31, 2008578. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Y.; Liu, Y.; Song, C.; Li, Q.; Wang, D.; Li, Y. Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angew. Chem. Int. Ed. 2020, 59, 20794–20812. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xia, B.; Li, N.; Xu, Z.; Fisher, A.; Wang, X. Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. J. Mater. Chem. A 2014, 3, 131–135. [Google Scholar] [CrossRef]
- Lin, X.-Y.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Jiang, H.-L.; Xu, Y.-J. A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal–organic frameworks. Nanoscale Horiz. 2020, 5, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Kagkoura, A.; Canton-Vitoria, R.; Vallan, L.; Hernandez-Ferrer, J.; Benito, A.; Maser, W.; Arenal, R.; Tagmatarchis, N. Bottom-Up Synthesized MoS2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chem. Eur. J. 2020, 26, 6635–6642. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, L.; Jin, C.; Sun, Q. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B Environ. 2019, 254, 329–338. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Luan, X.; Cheng, D. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 2020, 68, 104332. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Zhong, Y.; Yang, G.; Ni, M.; Zhou, W.; Shao, Z. Multifold Nanostructuring and Atomic-Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chem.—Eur. J. 2018, 24, 13800–13806. [Google Scholar] [CrossRef]
- Yang, L.; Liu, R.; Jiao, L. Electronic Redistribution: Construction and Modulation of Interface Engineering on CoP for Enhancing Overall Water Splitting. Adv. Funct. Mater. 2020, 30, 1909618. [Google Scholar] [CrossRef]
- Chen, J.; Ren, B.; Cui, H.; Wang, C. Constructing Pure Phase Tungsten-Based Bimetallic Carbide Nanosheet as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2020, 16, e1907556. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Cai, X.; Gao, Q.; Zhang, S.; Yang, S.; Wang, H.; Zhong, X.; Fang, Y. In situ photo-derived MnOOH collaborating with Mn2Co2C@C dual co-catalysts boost photocatalytic overall water splitting. J. Mater. Chem. A 2020, 8, 17120–17127. [Google Scholar] [CrossRef]
- Fu, W.; Wang, Y.; Tian, W.; Zhang, H.; Li, J.; Wang, S.; Wang, Y. Non-Metal Single-Phosphorus-Atom Catalysis of Hydrogen Evolution. Angew. Chem. Int. Ed. Engl. 2020, 59, 23791–23799. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ling, T.; Chen, S.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao, S. Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. Engl. 2019, 58, 12252–12257. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.; Xu, Z.; Wang, X. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catal. 2014, 4, 1693–1705. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656–6658. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Liu, L.; Ai, Y.; Hu, Z.; Xie, L.; Bao, H.; Wu, J.; Tian, H.; Guo, R.; et al. Facile and Large-Scale Fabrication of Porous Carbon Sheet Supported Sub-3 40. nm PtNi Nanoparticles: A Bifunctional Material for HER and Hydrogenation. Chem. Eur. J. 2019, 25, 7191–7200. [Google Scholar]
- Pu, Z.; Amiinu, I.S.; Kou, Z.; Li, W.; Mu, S. RuP2 -Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values. Angew. Chem. Int. Ed. 2017, 56, 11559–11564. [Google Scholar] [CrossRef]
- Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Interfacial Engineering of MoO2-FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. Adv. Mater. 2020, 32, e2000455. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J.-J.; Mi, W.; Zhang, X.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Shi, L.; Ye, J. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018, 8, 1701343. [Google Scholar] [CrossRef]
- Wu, A.; Gu, Y.; Xie, Y.; Tian, C.; Yan, H.; Wang, D.; Zhang, X.; Cai, Z.; Fu, H. Effective Electrocatalytic Hydrogen Evolution in Neutral Medium Based on 2D MoP/MoS2 Heterostructure Nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 25986–25995. [Google Scholar] [CrossRef]
- Paunović, P.; Gogovska, D.S.; Popovski, O.; Stoyanova, A.; Slavcheva, E.; Lefterova, E.; Iliev, P.; Dimitrov, A.T.; Jordanov, S.H. Preparation and characterization of Co–Ru/TiO2/MWCNTs electrocatalysts in PEM hydrogen electrolyzer. Int. J. Hydrog. Energy 2011, 36, 9405–9414. [Google Scholar] [CrossRef]
- Guo, B.-Y.; Zhang, X.-Y.; Xie, J.-Y.; Shan, Y.-H.; Fan, R.-Y.; Yu, W.-L.; Li, M.-X.; Liu, D.-P.; Chai, Y.-M.; Dong, B. Ultrafine RuP2 nanoparticles supported on nitrogen-doped carbon based on coordination effect for efficient hydrogen evolution. Int. J. Hydrog. Energy 2021, 46, 7964–7973. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Liu, R.; Xia, K.; Xuan, C.; Guo, J.; Lei, W.; Wang, D. Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy 2017, 32, 511–519. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Zhu, J.; Guo, J.; Xiao, W.; Xuan, C.; Lei, W.; Wang, D. Highly efficient and stable MoP-RGO nano-particles as electrocatalysts for hydrogen evolution. Electrochim. Acta 2017, 232, 254–261. [Google Scholar] [CrossRef]
- Guo, L.; Cao, L.; He, J.; Huang, J.; Li, J.; Kajiyoshi, K.; Chen, S. Layered-structure (NH4)2Mo4O13@N-doped porous carbon composite as a superior anode for lithium-ion batteries. Chem. Commun. 2020, 56, 7757–7760. [Google Scholar] [CrossRef]
- Muduli, S.; Rotte, N.K.; Naresh, V.; Martha, S.K. Nitrogen phosphorous derived carbons from Peltophorum pterocarpum leaves as anodes for lead–carbon hybrid ultracapacitors. J. Energy Storage 2020, 29, 101330. [Google Scholar] [CrossRef]
- Gokhale, R.; Chen, Y.; Serov, A.; Artyushkova, K.; Atanassov, P. Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochim. Acta 2017, 224, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Nagamuthu, S.; Ryu, K.-S. MOF-derived microstructural interconnected network porous Mn2O3/C as negative electrode material for asymmetric supercapacitor device. CrystEngComm 2019, 21, 1442–1451. [Google Scholar] [CrossRef]
- Zheng, X.; Han, X.; Zhang, Y.; Wang, J.; Zhong, C.; Deng, Y.; Hu, W. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale 2019, 11, 5646–5654. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.; Luo, G.; Lu, Y.; Chen, C.; Zou, Y.; Dong, C.; Li, Y.; Wang, S. Zirconium-Regulation-Induced Bifunctionality in 3D Cobalt-Iron Oxide Nanosheets for Overall Water Splitting. Adv. Mater. 2019, 31, e1901439. [Google Scholar] [CrossRef]
- Xing, J.; Li, Y.; Guo, S.; Jin, T.; Li, H.; Wang, Y.; Jiao, L. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2019, 298, 305–312. [Google Scholar] [CrossRef]
- Liu, T.; Xie, L.; Yang, J.; Kong, R.; Du, G.; Asiri, A.M.; Sun, X.; Chen, L. Self-Standing CoP Nanosheets Array: A Three-Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem 2017, 4, 1840–1845. [Google Scholar] [CrossRef]
- Liu, M.-R.; Hong, Q.-L.; Li, Q.-H.; Du, Y.; Zhang, H.-X.; Chen, S.; Zhou, T.; Zhang, J. Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1801131. [Google Scholar] [CrossRef]
- Chen, Z.; Kang, Q.; Cao, G.; Xu, N.; Dai, H.; Wang, P. Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrog. Energy 2018, 43, 6076–6087. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhao, Y.; Gao, Y.; Wu, Z.; Wang, L. Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media. Nanomaterials 2021, 11, 2347. https://doi.org/10.3390/nano11092347
Chen Z, Zhao Y, Gao Y, Wu Z, Wang L. Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media. Nanomaterials. 2021; 11(9):2347. https://doi.org/10.3390/nano11092347
Chicago/Turabian StyleChen, Zhi, Ying Zhao, Yuxiao Gao, Zexing Wu, and Lei Wang. 2021. "Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media" Nanomaterials 11, no. 9: 2347. https://doi.org/10.3390/nano11092347
APA StyleChen, Z., Zhao, Y., Gao, Y., Wu, Z., & Wang, L. (2021). Facile Synthesis of MoP-RuP2 with Abundant Interfaces to Boost Hydrogen Evolution Reactions in Alkaline Media. Nanomaterials, 11(9), 2347. https://doi.org/10.3390/nano11092347