N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of N-Doped Graphene
2.3. Characterizations
2.4. Electrochemical Performance for the NORR
2.5. DFT Calculation Details
3. Results and Discussions
3.1. Characterizations of Samples
3.2. Electrochemical Measurements of N-Doped Samples
3.3. Investigation into the Mechanism of Electrochemical NORR on N-Doped Graphene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Yang, J.; Koper, M.T.M. Electrocatalytic Reduction of Nitrate on Tin-modified Palladium Electrodes. Electrochim. Acta 2014, 140, 518–524. [Google Scholar] [CrossRef]
- Wang, H.; Turner, J.A. Photoelectrochemical reduction of nitrates at the illuminated p-GaInP2 photoelectrode. Energy Environ. Sci. 2013, 6, 1802–1805. [Google Scholar] [CrossRef]
- Su, J.F.; Ruzybayev, I.; Shah, I.; Huang, C.P. The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold. Appl. Catal. B Environ. 2016, 180, 199–209. [Google Scholar] [CrossRef]
- Manzo-Robledo, A.; Lévy-Clément, C.; Alonso-Vante, N. The interplay between hydrogen evolution reaction and nitrate reduction on boron-doped diamond in aqueous solution: The effect of alkali cations. Electrochim. Acta 2014, 117, 420–425. [Google Scholar] [CrossRef]
- Dima, G.E.; de Vooys, A.C.A.; Koper, M.T.M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554, 15–23. [Google Scholar] [CrossRef]
- Mishra, S.; Lawrence, F.; Mallika, C.; Pandey, N.K.; Srinivasan, R.; Mudali, U.K.; Natarajan, R. Kinetics of reduction of nitric acid by electrochemical method and validation of cell design for plant application. Electrochim. Acta 2015, 160, 219–226. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Yang, S.; Sugiura, N. Treatment of nitrate contaminated water using an electrochemical method. Bioresour. Technol. 2010, 101, 6553–6557. [Google Scholar] [CrossRef]
- Souza-Garcia, J.; Ticianelli, E.A.; Climent, V.; Feliu, J.M. Nitrate reduction on Pt single crystals with Pd multilayer. Electrochim. Acta 2009, 54, 2094–2101. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, H.; Rasmussen, M.; Scherson, D. Rational Design of Electrocatalytic Interfaces: The Multielectron Reduction of Nitrate in Aqueous Electrolytes. J. Phys. Chem. Lett. 2010, 1, 1907–1911. [Google Scholar] [CrossRef]
- Yang, J.; Calle-Vallejo, F.; Duca, M.; Koper, M.T.M. Electrocatalytic Reduction of Nitrate on a Pt Electrode Modified by p-Block Metal Adatoms in Acid Solution. ChemCatChem 2013, 5, 1773–1783. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Zhang, J.; Zhang, X. Investigation of nitrate reduction on polycrystalline Pt nanoparticles with controlled crystal plane. J. Electroanal. Chem. 2015, 755, 210–214. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Ahamad, N.; Uddin, S.M.N.; Mohamed, N. Silver modified platinum surface/H+ conducting Nafion membrane for cathodic reduction of nitrate ions. Appl. Surf. Sci. 2012, 258, 3309–3314. [Google Scholar] [CrossRef]
- Figueiredo, M.C.; Souza-Garcia, J.; Climent, V.; Feliu, J.M. Nitrate reduction on Pt(111) surfaces modified by Bi adatoms. Electrochem. Commun. 2009, 11, 1760–1763. [Google Scholar] [CrossRef]
- Figueiredo, M.C.; Solla-Gullón, J.; Vidal-Iglesias, F.J.; Climent, V.; Feliu, J.M. Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catal. Today 2013, 202, 2–11. [Google Scholar] [CrossRef]
- Chen, T.; Li, H.; Ma, H.; Koper, M.T.M. Surface Modification of Pt(100) for Electrocatalytic Nitrate Reduction to Dinitrogen in Alkaline Solution. Langmuir 2015, 31, 3277–3281. [Google Scholar] [CrossRef]
- Yang, J.; Sebastian, P.; Duca, M.; Hoogenboom, T.; Koper, M.T.M. pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes. Chem. Commun. 2014, 50, 2148–2151. [Google Scholar] [CrossRef]
- da Cunha, M.C.P.M.; de Souza, J.P.I.; Nart, F.C. Reaction Pathways for Reduction of Nitrate Ions on Platinum, Rhodium, and Platinum−Rhodium Alloy Electrodes. Langmuir 2000, 16, 771–777. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Huang, M.; Henry, J.B.; Koper, M.T.M.; Bandarenka, A.S. Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. Phys. Chem. Chem. Phys. 2013, 15, 3196–3202. [Google Scholar] [CrossRef] [PubMed]
- Souza-Garcia, J.; Ticianelli, E.A.; Climent, V.; Feliu, J.M. Mechanistic changes observed in heavy water for nitrate reduction reaction on palladium-modified Pt(hkl) electrodes. Chem. Sci. 2012, 3, 3063–3070. [Google Scholar] [CrossRef]
- Guy, K.A.; Xu, H.; Yang, J.C.; Werth, C.J.; Shapley, J.R. Catalytic Nitrate and Nitrite Reduction with Pd−Cu/PVP Colloids in Water: Composition, Structure, and Reactivity Correlations. J. Phys. Chem. C 2009, 113, 8177–8185. [Google Scholar] [CrossRef]
- Anastasopoulos, A.; Hannah, L.; Hayden, B.E. High throughput optimisation of PdCu alloy electrocatalysts for the reduction of nitrate ions. J. Catal. 2013, 305, 27–35. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Shen, Z.; Sugiura, N. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochem. Commun. 2009, 11, 1853–1856. [Google Scholar] [CrossRef]
- Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B. Polypyrrole coated cellulosic substrate modified by copper oxide as electrode for nitrate electroreduction. Surf. Rev. Lett. 2015, 22, 1550065. [Google Scholar] [CrossRef]
- Çirmi, D.; Aydın, R.; Köleli, F. The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode. J. Electroanal. Chem. 2015, 736, 101–106. [Google Scholar] [CrossRef]
- Bae, S.-E.; Stewart, K.L.; Gewirth, A.A. Nitrate Adsorption and Reduction on Cu(100) in Acidic Solution. J. Am. Chem. Soc. 2007, 129, 10171–10180. [Google Scholar] [CrossRef]
- Bae, S.-E.; Gewirth, A.A. Differential reactivity of Cu(111) and Cu(100) during nitrate reduction in acid electrolyte. Faraday Discuss. 2009, 140, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, J.; Wu, R.; Lei, P. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode. Water Res. 2006, 40, 1224–1232. [Google Scholar] [CrossRef]
- Siriwatcharapiboon, W.; Kwon, Y.; Yang, J.; Chantry, R.L.; Li, Z.; Horswell, S.L.; Koper, M.T.M. Promotion Effects of Sn on the Electrocatalytic Reduction of Nitrate at Rh Nanoparticles. ChemElectroChem 2014, 1, 172–179. [Google Scholar] [CrossRef]
- Katsounaros, I.; Dortsiou, M.; Polatides, C.; Preston, S.; Kypraios, T.; Kyriacou, G. Reaction pathways in the electrochemical reduction of nitrate on tin. Electrochim. Acta 2012, 71, 270–276. [Google Scholar] [CrossRef]
- Shen, J.; Birdja, Y.Y.; Koper, M.T.M. Electrocatalytic Nitrate Reduction by a Cobalt Protoporphyrin Immobilized on a Pyrolytic Graphite Electrode. Langmuir 2015, 31, 8495–8501. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Jeong, J.-Y.; Cho, H.-N.; Park, J.-Y. Kinetics of nitrate reduction with the packed bed iron bipolar electrode. Sep. Purif. Technol. 2015, 152, 140–147. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, Y.; Zhong, Y.; Wu, H.; Zhai, M. Fast electrodeposition, influencing factors and catalytic properties of dendritic Cu–M (M = Ni, Fe, Co) microstructures. RSC Adv. 2015, 5, 96639–96648. [Google Scholar] [CrossRef]
- Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gambirasi, A.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim. Acta 2014, 140, 337–344. [Google Scholar] [CrossRef]
- Imar, S.; Maccato, C.; Dickinson, C.; Laffir, F.; Vagin, M.; McCormac, T. Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Langmuir 2015, 31, 2584–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, M.A.; Santiago, A.R.P.; Rodriguez, A.; Maturano-Rojas, V.; Alvarado-Tenorio, B.; Bernal, R.; Noveron, J.C. Biomass-derived ultrathin carbon-shell coated iron nanoparticles as high-performance tri-functional HER, ORR and Fenton-like catalysts. J. Clean. Prod. 2020, 275, 124141. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Santiago, A.R.P.; Sanad, M.F.; Weller, J.M.; Fernandez-Delgado, O.; Barrera, L.A.; Maturano-Rojas, V.; Alvarado-Tenorio, B.; Chan, C.K.; Noveron, J.C. Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts: Carbon-shell influence on the electrocatalytic behaviour. J. Colloid Interface Sci. 2021, 581, 905–918. [Google Scholar] [CrossRef]
- Sanad, M.F.; Santiago, A.R.P.; Tolba, S.A.; Ahsan, M.A.; Fernandez-Delgado, O.; Adly, M.S.; Hashem, E.M.; Abodouh, M.M.; El-Shall, M.S.; Sreenivasan, S.T.; et al. Co-Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. J. Am. Chem. Soc. 2021, 143, 4064–4073. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.R.P.; Sanad, M.F.; Moreno-Vicente, A.; Ahsan, M.A.; Ceron, M.R.; Yao, Y.R.; Sreenivasan, S.T.; Rodriguez-Fortea, A.; Poblet, J.M.; Echegoyen, L. A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M3N@C2n (2n = 68, 78, and 80) Fullerenes. J. Am. Chem. Soc. 2021, 143, 6037–6042. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.R.P.; He, T.; Eraso, O.; Ahsan, M.A.; Nair, A.N.; Chava, V.S.N.; Zheng, T.; Pilla, S.; Fernandez-Delgado, O.; Du, A.; et al. Tailoring the Interfacial Interactions of van der Waals 1T-MoS2/C60 Heterostructures for High-Performance Hydrogen Evolution Reaction Electrocatalysis. J. Am. Chem. Soc. 2020, 142, 17923–17927. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Santiago, A.R.P.; Hong, Y.; Zhang, N.; Cano, M.; Rodriguez-Castellon, E.; Echegoyen, L.; Sreenivasan, S.T.; Noveron, J.C. Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions. J. Am. Chem. Soc. 2020, 142, 14688–14701. [Google Scholar] [CrossRef]
- Kamiya, K.; Hashimoto, K.; Nakanishi, S. Graphene Defects as Active Catalytic Sites that are Superior to Platinum Catalysts in Electrochemical Nitrate Reduction. ChemElectroChem 2014, 1, 858–862. [Google Scholar] [CrossRef]
- Sander, E.M.; Virdis, B.; Freguia, S. Dissimilatory nitrate reduction to ammonium as an electron sink during cathodic denitrification. RSC Adv. 2015, 5, 86572–86577. [Google Scholar] [CrossRef]
- Rosca, V.; Duca, M.; de Groot, M.T.; Koper, M.T.M. Nitrogen Cycle Electrocatalysis. Chem. Rev. 2009, 109, 2209–2244. [Google Scholar] [CrossRef] [PubMed]
- Lange, R.; Maisonhaute, E.; Robin, R.; Vivier, V. On the kinetics of the nitrate reduction in concentrated nitric acid. Electrochem. Commun. 2013, 29, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-B.; Song, Y.-J.; Lee, Y.-W.; Ko, A.R.; Oh, J.-K.; Park, K.-W. High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst. Chem. Commun. 2011, 47, 3496–3498. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130. [Google Scholar] [CrossRef]
- Wu, J.; Liu, M.; Sharma, P.P.; Yadav, R.M.; Ma, L.; Yang, Y.; Zou, X.; Zhou, X.-D.; Vajtai, R.; Yakobson, B.I.; et al. Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Lett. 2016, 16, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.-X.; Wang, J.; Zhang, Y.-W.; Xu, W.-L.; Xing, W.; Xu, D.; Zhang, Y.-F.; Zhang, X.-B. ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angew. Chem. Int. Ed. 2014, 53, 14235–14239. [Google Scholar] [CrossRef]
- Wang, D.-W.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.P.; Wu, J.J.; Yadav, R.M.; Liu, M.J.; Wright, C.J.; Tiwary, C.S.; Yakobson, B.I.; Lou, J.; Ajayan, P.M.; Zhou, X.D. Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. Angew. Chem.-Int. Edit. 2015, 54, 13701–13705. [Google Scholar] [CrossRef]
- Wu, J.J.; Yadav, R.M.; Liu, M.J.; Sharma, P.P.; Tiwary, C.S.; Ma, L.L.; Zou, X.L.; Zhou, X.D.; Yakobson, B.I.; Lou, J.; et al. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano 2015, 9, 5364–5371. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Shang, B.; Zhai, J. N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. Nanomaterials 2021, 11, 2418. https://doi.org/10.3390/nano11092418
Zhao J, Shang B, Zhai J. N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. Nanomaterials. 2021; 11(9):2418. https://doi.org/10.3390/nano11092418
Chicago/Turabian StyleZhao, Jujiao, Bo Shang, and Jun Zhai. 2021. "N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction" Nanomaterials 11, no. 9: 2418. https://doi.org/10.3390/nano11092418
APA StyleZhao, J., Shang, B., & Zhai, J. (2021). N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. Nanomaterials, 11(9), 2418. https://doi.org/10.3390/nano11092418