Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Zeolite/Algae (ZAS) Composite
2.3. Preparation of the Adsorbate
2.4. Samples Characterizations
2.5. Adsorption Studies
2.6. Adsorption Isotherms
2.7. Adsorption Kinetics and Mechanism
2.8. Computational Calculations
2.9. Field Experiments
3. Results and Discussion
3.1. Characterization of the Adsorbents
3.1.1. Morphological Properties
3.1.2. X-ray Diffraction Characterization
3.1.3. FT-IR Analysis
3.2. Factors Influencing the Adsorption Process
3.2.1. Influence of Starting CR Concentration
3.2.2. Influence of Adsorbent Dosage
3.2.3. Influence of pH
3.2.4. Influence of Temperature
3.2.5. Reusability Test
3.3. Adsorption Isotherms
3.4. Adsorption Kinetics and Sorption Mechanism
3.5. Computational Analysis
3.6. Field Experiment and Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, V.G. Dyes for the next millennium. Colourage 1998, 45, 53–56. [Google Scholar]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.S.; Soliman, N.; Moustafa, A.; Abdel-Gawad, O.F.; Taha, R.R.; Ahmed, S.A. Nano metal oxide impregnated Chitosan-4-nitroacetophenone for industrial dye removal. Int. J. Environ. Anal. Chem. 2019, 1–28. [Google Scholar] [CrossRef]
- Soliman, N.; Mohamed, H.; Elsayed, R.; Elmedny, N.M.; Elghandour, A.H.; Ahmed, S.A. Removal of chromium and cadmium ions from aqueous solution using residue of Rumex dentatus L. plant waste. Desalination Water Treat. 2019, 149, 181–193. [Google Scholar] [CrossRef]
- Soliman, N.; Mohamed, H.; Ahmed, S.A.; Sayed, F.H.; Elghandour, A.H.; Ahmed, S.A. Cd2+ and Cu2+ removal by the waste of the marine brown macroalga Hydroclathrus clathratus. Environ. Technol. Innov. 2019, 15, 100365. [Google Scholar] [CrossRef]
- Da’Na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 2017, 247, 145–157. [Google Scholar] [CrossRef]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-spatial Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Christie, R.M. Environmental Aspects of Textile Dyeing, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-184-569-115-8. [Google Scholar]
- Bae, J.-S.; Freeman, H.S. Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dye. Pigment. 2005, 73, 81–85. [Google Scholar] [CrossRef]
- Lehr, J.H.; Gass, T.E.; Pettyjohn, W. Domestic Water Treatment. McGraw Hill Book Co.: New York, NY, USA, 1980; p. 272. ISBN 978-156-034-007-2. [Google Scholar]
- Nemerow, N.L. Industrial Water Pollution. Origins Characteristics and Treatment; Addison-Wesley Publishing Co.: Reading, MA, USA, 1978; Volume 4, p. 738. ISBN 978-020-105-246-6. [Google Scholar]
- Gupta, V.K. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Foroughi-Dahr, M.; Abolghasemi, H.; Esmaili, M.; Shojamoradi, A.; Fatoorehchi, H. Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste. Chem. Eng. Commun. 2014, 202, 181–193. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R. Geochemical evaluation and environmental application of Yemeni natural zeolite as sorbent for Cd2+ from solution: Kinetic modeling, equilibrium studies, and statistical optimization. Environ. Earth Sci. 2017, 76, 310. [Google Scholar] [CrossRef]
- Shaban, M.; Elwahab, F.A.; Ghitas, A.E.; El Zayat, M.Y. Efficient and recyclable photocatalytic degradation of methylene blue dye in aqueous solutions using nanostructured Cd1—xCoxS films of different doping levels. J. Sol-Gel Sci. Technol. 2020, 95, 276–288. [Google Scholar] [CrossRef]
- Shaban, M.; Abdallah, H.; Said, L.; Ahmed, A.M. Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes. J. Polym. Res. 2019, 26, 181. [Google Scholar] [CrossRef]
- Doğan, M.; Alkan, M.; Demirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 2006, 124, 89–101. [Google Scholar] [CrossRef]
- El Qada, E.N.; Allen, S.J.; Walker, G. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem. Eng. J. 2006, 124, 103–110. [Google Scholar] [CrossRef]
- Shaban, M.; Sayed, M.I.; Shahien, M.G.; Abukhadra, M.R.; Ahmed, Z.M. Adsorption behavior of inorganic- and organ-ic-modified kaolinite for Congo red dye from water, kinetic modeling, and equilibrium studies. J. Sol-Gel Sci. Technol. 2018, 87, 427–441. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Chary, N.S.; Raj, D.S.S. Decolourization of industrial effluents—Available methods and emerging technolo-gies—A review. Rev. Environ. Sci. Bio/Technol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shokrollahi, A.; Tavallali, H.; Shojaiepoor, F.; Keshavarz, B.; Hossainian, H.; Soylak, M.; Purkait, M.K. Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of arsenazo(ΙΙΙ) and methyl red from waste water. Toxicol. Environ. Chem. 2010, 93, 438–449. [Google Scholar] [CrossRef]
- Gainanova, A.A.; Domoroshchina, E.N.; Kuz’Micheva, G.M.; Khramov, E.V.; Chumakov, R.G.; Gotovtsev, P.M.; Pirutko, L.V.; Zybinskiy, A.M.; Yashina, N.V. New composites based on zeolites (H-Beta, H-ZSM-5) and nanosized titanium(iv) oxide (anatase and η-phase) doped by Ni, Ag, V with photocatalytic, adsorption and bactericidal properties. New J. Chem. 2020, 45, 2417–2430. [Google Scholar] [CrossRef]
- Maharana, M.; Manna, M.; Sardar, M.; Sen, S. Heavy metal removal by low-cost adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water, 1st ed.; Mohd Imran Ahamed, I., Lichtfouse, E., Asiri, A.M., Eds.; Springer: Berlin, Germany, 2021; pp. 245–272. ISBN 978-3-030-47399-0. [Google Scholar]
- El-Zeiny, H.M.; Abukhadra, M.R.; Sayed, O.; Osman, A.H.; Ahmed, S.A. Insight into novel β-cyclodextrin-grafted-poly (N-vinylcaprolactam) nanogel structures as advanced carriers for 5-fluorouracil: Equilibrium behavior and pharmacokinetic modeling. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124197. [Google Scholar] [CrossRef]
- Selim, A.Q.; Sellaoui, L.; Ahmed, S.A.; Mobarak, M.; Mohamed, E.A.; Ben Lamine, A.; Erto, A.; Bonilla-Petriciolet, A.; Seliem, M.K. Statistical physics-based analysis of the adsorption of Cu2+ and Zn2+ onto synthetic cancrinite in single-compound and binary systems. J. Environ. Chem. Eng. 2019, 7, 103217. [Google Scholar] [CrossRef]
- Mohamed, F.; Abukhadra, M.R.; Shaban, M. Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci. Total Environ. 2018, 640-641, 352–363. [Google Scholar] [CrossRef]
- Alabdly, H.A.; Al-Nuaemi, I.J.; Al Ani, H.N.A.; Cotorcea, S.; Nechifor, A.C. Removal of Toxic Phenolic Compounds from Wastewater Using Zeolite (4A) Prepared from Local Clays Taken from the Slopes of the Tigris River. Rev. Chim. 2021, 72, 44–52. [Google Scholar] [CrossRef]
- Sabonian, M.; Mahanpoor, K. Photocatalytic Degradation of Dye Pollutant in Synthetic Wastewater by Nano-Fe3O4 Based on Clinoptilolite Zeolite. Arch. Hyg. Sci. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Dosa, M.; Piumetti, M.; Davarpanah, E.; Moncaglieri, G.; Bensaid, S.; Fino, D. Natural zeolites as sustainable materials for environmental processes. In Nanostructured Catalysts for Environmental Applications; Springer: Berlin, Germany, 2021; pp. 367–381. ISBN 978-3-030-58933-2. [Google Scholar]
- Gayatri, R.; Agustina, T.E.; Moeksin, R.; Bahrin, D.; Gustini, G. Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light. J. Ecol. Eng. 2021, 22, 178–186. [Google Scholar] [CrossRef]
- Narayanan, S.; Tamizhdurai, P.; Mangesh, V.L.; Ragupathi, C.; Krishnan, P.S.; Ramesh, A. Recent advances in the synthesis and applications of mordenite zeolite—Review. RSC Adv. 2020, 11, 250–267. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Reeve, P.J.; Fallowfield, H. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manag. 2018, 205, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Altintig, E.; Alsancak, A.; Karaca, H.; Angın, D.; Altundag, H. The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem. Eng. Commun. 2021, 1–15. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Shahien, M.G.; Ibrahim, S.S. Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ. Chem. Lett. 2017, 16, 275–280. [Google Scholar] [CrossRef]
- Saqib, N.U.; Adnan, R.; Rahim, M.; Khan, A. Low-cost Zeolite/TiO2 composite for the photocatalytically enhanced adsorption of Cd2+ from aqueous solution. J. Iran. Chem. Soc. 2021, 1–16. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Lupu, N.; Chiriac, H.; Herea, D.D.; Ciobanu, G. Fly Ash Coated with Magnetic Materials: Improved Adsorbent for Cu (II) Removal from Wastewater. Materials 2020, 14, 63. [Google Scholar] [CrossRef]
- Shankhadarwar, S.D. Phytochemical analysis of red alga Acanthophora spicifera (Vahl) collected from Mumbai, India. J. Chem. Pharm. Res. 2015, 7, 441–444. [Google Scholar]
- Marzbali, M.H.; Mir, A.A.; Pazoki, M.; Pourjamshidian, R.; Tabeshnia, M. Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. J. Environ. Chem. Eng. 2017, 5, 1946–1956. [Google Scholar] [CrossRef]
- Khedr, M.; Halim, K.A.; Soliman, N. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Appl. Surf. Sci. 2008, 255, 2375–2381. [Google Scholar] [CrossRef]
- Khedr, M.H.; Nasr, M.I.; Abdel Halim, K.S.; Farghali, A.A.; Soliman, N.K. Catalytic decomposition of hydrocarbon gas over various nanostructured metal oxides for hydrocarbon removal and production of carbon nanotubes. Int. J. Eng. Res. Gen. Sci. 2014, 2, 413–424. [Google Scholar]
- Shaban, M.; Mustafa, M.; El Sayed, A. Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater. Sci. Semicond. Process. 2016, 56, 329–343. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Hamd, A.; Amin, R.R.; Khalek, A.A. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J. Environ. Manag. 2017, 204, 189–199. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F.; Aboud, A.A.; Halim, K.S.A. Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 2019, 8, 1798–1808. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Temkin, M. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 1940, 12, 327–356. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Ozdemir, O.; Armagan, B.; Turan, M.; Çelik, M.S. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dye. Pigment. 2004, 62, 49–60. [Google Scholar] [CrossRef]
- Xin, N.; Gu, X.; Wu, H.; Hu, Y.; Yang, Z. Application of genetic algorithm-support vector regression (GA-SVR) for quantitative analysis of herbal medicines. J. Chemom. 2012, 26, 353–360. [Google Scholar] [CrossRef]
- Mohamed, H.; Soliman, N.; Abdelrheem, D.A.; Ramadan, A.A.; Elghandour, A.H.; Ahmed, S.A. Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of padina gymnospora waste as promising low-cost adsorbent. Heliyon 2019, 5, e01287. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Luo, C.; Sun, M.; Qiu, H.; Li, X. Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surfaces B Biointerfaces 2013, 103, 601–607. [Google Scholar] [CrossRef]
- Demiral, H.; Gündüzoğlu, G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 2010, 101, 1675–1680. [Google Scholar] [CrossRef]
- Rady, D.; Shaban, M.; Elsayed, K.N.M.; Hamd, A.; Soliman, N.K.; El-Mageed, H.R.A.; Elzanaty, A.M.; El-Sayed, R.; Morada, M.; El-Bahy, S.M.; et al. Experimentally and theoretically approaches for Congo red dye adsorption on novel kaolinite-alga nano-composite. Int. J. Environ. Anal. Chem. 2021, 1–23. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Rao, Z.-H.; Wang, S.F.; Zhang, Y.L.; Peng, F.F.; Cai, S.H. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Phys. Sin. 2013, 62, 056601. [Google Scholar]
- Uzunova, E.L.; Mikosch, H. Adsorption and Activation of Ethene in Transition Metal Exchanged Zeolite Clinoptilolite: A Density Functional Study. ACS Catal. 2013, 3, 2759–2767. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–638. ISBN 978-0-12-267351-1. [Google Scholar]
- Gougazeh, M.; Buhl, J.-C. Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. J. Assoc. Arab. Univ. Basic Appl. Sci. 2014, 15, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Treacy, M.M.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-044-453-067-7. [Google Scholar]
- Sivakumar, S.R.; Arunkumar, K. Sodium, Potassium and Sulphate Composition in Some Seaweeds Occurring along the Coast of Gulf of Mannar, India. Asian J. Plant Sci. 2009, 8, 500–504. [Google Scholar] [CrossRef]
- Pi, Z.; Liu, Z.; Yang, C.; Tian, X.; Fei, J.; Zheng, J. Exfoliation of kaolinite by urea-intercalation precursor and microwave irradiation assistance process. Front. Earth Sci. China 2007, 1, 26–29. [Google Scholar] [CrossRef]
- Vaculikova, L.; Plevova, E.; Vallova, S.; Koutnik, I. Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geromater. 2011, 8, 59. [Google Scholar]
- Horváth, E.; Kristóf, J.; Frost, R.L. Vibrational Spectroscopy of Intercalated Kaolinites. Part I. Appl. Spectrosc. Rev. 2010, 45, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Madejova, J. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Masoudi, R.; Moghimi, H.; Azin, E.; Taheri, R.A. Adsorption of cadmium from aqueous solutions by novel Fe3O4− newly isolated actinomucor sp. bio-nanoadsorbent: Functional group study. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1092–S1101. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, P.; Subramanian, K.; Dastidar, M. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manag. 2016, 182, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, M.M.; El-Desoky, H.S.; El-Moselhy, K.M.; Amer, A.; El-Naga, E.H.A.; Mohamedein, L.; Al-Prol, A.E. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 2014, 40, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.M.; Hassan, A.F.; Azab, Y.A. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci. 2016, 3, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, F.; Allah, A.E.; Abu Al-Ola, K.; Shaban, M. Design and Characterization of a Novel ZnO–Ag/Polypyrrole Core–Shell Nanocomposite for Water Bioremediation. Nanomaterials 2021, 11, 1688. [Google Scholar] [CrossRef]
- Sharma, Y.C. Uma Optimization of Parameters for Adsorption of Methylene Blue on a Low-Cost Activated Carbon. J. Chem. Eng. Data 2009, 55, 435–439. [Google Scholar] [CrossRef]
- Tahir, M.A.; Bhatti, H.N.; Iqbal, M. Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. J. Environ. Chem. Eng. 2016, 4, 2431–2439. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Shaban, M. Recycling of different solid wastes in synthesis of high-order mesoporous silica as adsorbent for safranin dye. Int. J. Environ. Sci. Technol. 2019, 16, 7573–7582. [Google Scholar] [CrossRef]
- Pons, M.P. Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Appl. Microbiol. Biotechnol. 1993, 39, 661–665. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Khan, A.A.P.; Jibali, B.M. Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J. Taiwan Inst. Chem. Eng. 2018, 82, 102–116. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Santosa, S.J. Sutarno Adsorption of Congo Red Dye on HDTMA Surfactant-Modified Zeolite A Synthesized from Fly Ash. Defect Diffus. Forum 2018, 382, 307–311. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Ou, L. Kinetic, Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2011, 57, 412–419. [Google Scholar] [CrossRef]
- Noreen, S.; Bhatti, H.N.; Zuber, M.; Zahid, M.; Asgher, M. Removal of Actacid Orange-RL Dye Using Biocomposites: Modeling Studies. Pol. J. Environ. Stud. 2017, 26, 2125–2134. [Google Scholar] [CrossRef]
- Mushtaq, M.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies. J. Environ. Manag. 2016, 176, 21–33. [Google Scholar] [CrossRef]
- Rashid, A.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: A mechanistic study. Ecol. Eng. 2016, 91, 459–471. [Google Scholar] [CrossRef]
- Naghizadeh, A. Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology. Arab. J. Sci. Eng. 2015, 41, 155–161. [Google Scholar] [CrossRef]
- Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fundam. 1966, 5, 212–223. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Madan, S.; Shaw, R.; Tiwari, S.; Tiwari, S.K. Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl. Surf. Sci. 2019, 487, 907–917. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Y.; Li, P.; Diao, K.; Tan, X.; Lei, F.; Zhan, Y.; Li, Q.; Huang, B.; Huang, Z. Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chem. Eng. J. 2014, 248, 135–144. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Parameswaranpillai, J.; Siengchin, S. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yulizar, Y.; Utari, T.; Apriandanu, D.O.B.; Putri, Y.R.P. Chitosan nanoparticles on a natural zeolite as an efficient adsorbent for Congo red. IOP Conf. Series Mater. Sci. Eng. 2019, 496, 012005. [Google Scholar] [CrossRef]
- Chowdhury, S.; Bhattacharyya, K.G. Use of Cu(II)-incorporated zeolite Y for decolourization of dyes in water: A case study with aqueous methylene blue and Congo red. SN Appl. Sci. 2018, 1, 87. [Google Scholar] [CrossRef] [Green Version]
Langmuir Isotherm | |||||
Constant Adsorbent | Qo (mg/g) | KL (L/mg) | RL | R2 | |
ZAS | 16.39 | 3.59 | 0.9951 | 0.011 | |
AS | 15.38 | 4.29 | 0.9984 | 0.009 | |
Z | 9.25 | 0.38 | 0.094 | 0.9794 | |
Freundlich Isotherm | |||||
Constant Adsorbent | 1/n | Kf | R2 | ||
ZAS | 0.116 | 11.40 | 0.9890 | ||
AS | 0.196 | 10.34 | 0.8601 | ||
Z | 0.404 | 2.85 | 0.8569 | ||
Temkin Isotherm | |||||
Constant Adsorbent | B (J/mol) | KT (L/mole) | R2 | ||
ZAS | 1.0571 | 140,930 | 0.9890 | ||
AS | 1.856 | 416.5 | 0.8601 | ||
Z | 2.1487 | 2.85 | 0.8569 |
Adsorbent | Conc, Ppm | First-Order | Second-Order | Elovich Kinetic Model | Intraparticle Diffusion Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe exp | qe calc. | k1 | R2 | qe calc. | k2 | R2 | β (g/mg) | α (mg/min) | R2 | I | k3 (mg/g.min 1/2) | R2 | ||
Z | 5 | 3.10 | 2.75 | 0.0028 | 0.9603 | 3.82 | 0.00228 | 0.9751 | 1.3158 | 0.0844 | 0.9597 | 0.167 | 0.146 | 0.9909 |
10 | 5.90 | 5.75 | 0.0043 | 0.9682 | 6.94 | 0.00189 | 0.9918 | 0.7143 | 0.2035 | 0.9575 | 0.510 | 0.293 | 0.9661 | |
15 | 7.25 | 7.95 | 0.0041 | 0.9845 | 9.70 | 0.00073 | 0.9917 | 0.4546 | 0.1375 | 0.9835 | −0.033 | 0.381 | 0.9821 | |
20 | 7.60 | 8.50 | 0.0042 | 0.9352 | 9.80 | 0.00087 | 0.9854 | 0.4762 | 0.1765 | 0.9630 | 0.168 | 0.389 | 0.9898 | |
25 | 8.10 | 9.50 | 0.0043 | 0.9798 | 11.36 | 0.00055 | 0.9890 | 0.3846 | 0.1510 | 0.9835 | −0.175 | 0.435 | 0.9805 | |
AS | 5 | 4.93 | 1.49 | 0.0039 | 0.2210 | 5.53 | 0.00329 | 0.9945 | 1.1976 | 0.6439 | 0.9830 | 0.893 | 0.212 | 0.9160 |
10 | 9.80 | 3.27 | 0.0048 | 0.2790 | 11.13 | 0.00138 | 0.9920 | 0.6050 | 1.1394 | 0.9730 | 1.490 | 0.427 | 0.9370 | |
15 | 12.58 | 5.42 | 0.0033 | 0.3980 | 15.86 | 0.00044 | 0.9398 | 0.4936 | 0.9474 | 0.8730 | 0.467 | 0.567 | 0.9870 | |
20 | 14.65 | 6.79 | 0.0035 | 0.3660 | 19.68 | 0.00027 | 0.8960 | 0.4255 | 0.9534 | 0.8271 | 0.0002 | 0.673 | 0.9810 | |
25 | 15.00 | 6.31 | 0.0032 | 0.3310 | 18.13 | 0.00042 | 0.9362 | 0.4237 | 1.1779 | 0.8860 | 0.793 | 0.653 | 0.9800 | |
ZAS | 5 | 4.99 | 4.08 | 0.0182 | 0.9201 | 5.31 | 0.00738 | 0.9989 | 1.4201 | 2.2864 | 0.9680 | 1.471 | 0.195 | 0.7910 |
10 | 9.66 | 5.56 | 0.0094 | 0.7940 | 10.85 | 0.00155 | 0.9922 | 0.5309 | 0.6954 | 0.9680 | 1.727 | 0.409 | 0.9220 | |
15 | 12.85 | 9.10 | 0.0104 | 0.7260 | 15.35 | 0.00071 | 0.9857 | 0.3248 | 0.4324 | 0.9630 | 1.275 | 0.581 | 0.9698 | |
20 | 14.66 | 8.67 | 0.0069 | 0.5395 | 16.79 | 0.00056 | 0.9562 | 0.3037 | 0.4656 | 0.9130 | 1.251 | 0.634 | 0.9750 | |
25 | 16.07 | 5.73 | 0.0034 | 0.3867 | 18.56 | 0.00059 | 0.9712 | 0.2943 | 0.6577 | 0.9300 | 1.865 | 0.683 | 0.9650 |
Systems | Adsorption Energy | Rigid Adsorption Energy | Deformation Energy | Congo Red: dEad/dNi |
---|---|---|---|---|
3 nm | −41.22350801 | −31.58960227 | −8.63390575 | −41.22350801 |
5 nm | −39.83882700 | −28.74763343 | −10.09119357 | −39.83882700 |
7 nm | −37.15356471 | −27.49577995 | −15.65778476 | −37.15356471 |
Adsorbent | Conditions | Adsorption Capacity (qm) (mg/g) | Removal% | Reference |
---|---|---|---|---|
Zeolite | Concentration: 200 mg/L Dosage: 10 g/100 mL pH: 3 Temperature: 25 °C | 4.3 | 95% | [87] |
ZnO@Ze Composite | Concentration: 100 mg/L Dose: 50 mg pH: 3 Temperature: 25 °C Time: 60 min | 161.3 | 99.5% | [88] |
SMZ6 | Concentration: 30 mg/L Dose: 40 mg pH: 6 Temperature: 20–40 °C Time: 24 h | 69.94 | 98.7% | [89] |
PVA/SA/ZSM-5 zeolite membrane | Concentration: 10 ppm Dosage: 2.5 wt% pH: 3 Temperature: 30 °C Time: 130 min | 5.33 | 99.3% | [90] |
Na-zeolite@chitosan nanoparticle | Concentration: 800 ppm Dose: 0.1 g pH: 5 Temperature: 25 °C Time: 60 min | 0.00428 mmol/g | 98.019% | [91] |
Cu(II)-incorporated zeolite Y | Concentration: 10 mg/L Dosage: 1.5 g/L pH: 7 At room temperature Time: 240 min | - | 87.72% | [92] |
Z | Contact time: 480 min adsorbent dose: 0.02 g Concentration: 20 mg/L pH: 7 Temp: 25 °C | 8.17 | 65 | This work |
AS | 15 | 98.68 | ||
ZAS | 16.07 | 99.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamd, A.; Dryaz, A.R.; Shaban, M.; AlMohamadi, H.; Abu Al-Ola, K.A.; Soliman, N.K.; Ahmed, S.A. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. Nanomaterials 2021, 11, 2441. https://doi.org/10.3390/nano11092441
Hamd A, Dryaz AR, Shaban M, AlMohamadi H, Abu Al-Ola KA, Soliman NK, Ahmed SA. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. Nanomaterials. 2021; 11(9):2441. https://doi.org/10.3390/nano11092441
Chicago/Turabian StyleHamd, Ahmed, Asmaa Ragab Dryaz, Mohamed Shaban, Hamad AlMohamadi, Khulood A. Abu Al-Ola, Nofal Khamis Soliman, and Sayed A. Ahmed. 2021. "Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater" Nanomaterials 11, no. 9: 2441. https://doi.org/10.3390/nano11092441
APA StyleHamd, A., Dryaz, A. R., Shaban, M., AlMohamadi, H., Abu Al-Ola, K. A., Soliman, N. K., & Ahmed, S. A. (2021). Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. Nanomaterials, 11(9), 2441. https://doi.org/10.3390/nano11092441