Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, L.W.; Ramesh, R. Overview No. 151 Multiferroic and magnetoelectric heterostructures. Acta Mater. 2012, 60, 2449–2470. [Google Scholar] [CrossRef] [Green Version]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Bibes, M.; Barthelemy, A. Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 2008, 7, 425–426. [Google Scholar] [CrossRef]
- Yue, Z.W.; Tan, G.Q.; Yang, W.; Ren, H.J.; Xiao, A. Enhanced multiferroic properties in Pr-doped BiFe0.97Mn0.03O3 films. Ceram. Int. 2016, 42, 18692–18699. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Laletin, U.; Petrov, V.M.; Petrov, V.V.; Srinivasan, G. A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 2012, 100, 173506. [Google Scholar] [CrossRef]
- Hasegawa, M.; Asano, T.; Hashimoto, K.; Lee, G.C.; Park, Y.C.; Okazaki, T.; Furuya, Y. Fabrication of multiferroic composite actuator material by combining superelastic TiNi filler and a magnetostrictive Ni matrix. Smar. Mate. Stru. 2006, 15, N124–N128. [Google Scholar] [CrossRef]
- Huang, A.; Handoko, A.D.; Goh, G.K.; Pallathadka, P.K.; Shannigrahi, S. Hydrothermal synthesis of (001) epitaxial BiFeO3 films on SrTiO3 substrate. CrystEngComm 2010, 12, 3806–3814. [Google Scholar] [CrossRef]
- Lebeugle, D.; Colson, D.; Forget, A.; Viret, M.; Bonville, P.; Marucco, J.F.; Fusil, S. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 2007, 76, 024116. [Google Scholar] [CrossRef] [Green Version]
- Prashanthi, K.; Shaibani, P.M.; Sohrabi, A.; Natarajan, T.S.; Thundat, T. Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi RRL 2012, 6, 244–246. [Google Scholar] [CrossRef]
- Shami, M.Y.; Awan, M.S.; Anis-ur-Rehman, M. The effect of heat treatment on structural and multiferroic properties of phase-pure BiFeO3. J. Electron. Mater. 2012, 41, 2216–2224. [Google Scholar] [CrossRef]
- Singh, S.K. Structural and electrical properties of Sm-substituted BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Film. 2013, 527, 126–132. [Google Scholar] [CrossRef]
- Zhou, J.; Trassin, M.; He, Q.; Tamura, N.; Kunz, M.; Cheng, C.; Wu, J. Directed assembly of nano-scale phase variants in highly strained BiFeO3 thin films. J. Appl. Phys. 2012, 112, 064102. [Google Scholar] [CrossRef] [Green Version]
- Reetu, A.; Sanghi, S. Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J. Appl. Phys. 2011, 110, 073909. [Google Scholar] [CrossRef]
- Qi, X.; Dho, J.; Tomov, R.; Blamire, M.G.; Blamire, J.L. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 Macmanus-driscoll. Appl. Phys. Lett. 2005, 86, 062903. [Google Scholar] [CrossRef]
- Gumiel, C.; Jardiel, T.; Calatayud, D.G.; Vranken, T.; Van Bael, M.K.; Hardy, A.; Peiteado, M. Nanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO3-based thin films produced by aqueous chemical solution deposition. J. Mater. Chem. C 2020, 8, 4234–4245. [Google Scholar] [CrossRef] [Green Version]
- Madolappa, S.; Kundu, S.; Bhimireddi, R.; Varma, K.B. Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol-gel route. Mater. Res. Express 2016, 3, 065009. [Google Scholar] [CrossRef]
- Shimada, T.; Arisue, K.; Kitamura, T. Strain-induced phase transitions in multiferroic BiFeO3 (110) epitaxial film. Phys. Lett. A 2012, 376, 3368–3371. [Google Scholar] [CrossRef]
- Yang, J.C.; He, Q.; Suresha, S.J.; Kuo, C.Y.; Peng, C.Y.; Haislmaier, R.C.; Chu, Y.H. Orthorhombic BiFeO3. Phys. Rev. Lett. 2012, 109, 247606. [Google Scholar] [CrossRef] [Green Version]
- Chai, Z.; Tan, G.; Yue, Z.; Yang, W.; Guo, M.; Ren, H.; Lv, L. Ferroelectric properties of BiFeO3 thin films by Sr/Gd/Mn/Co multi-doping. J. Alloys Compd. 2018, 746, 677–687. [Google Scholar] [CrossRef]
- Wen, X.L.; Chen, Z.; Liu, E.H.; Lin, X.; Chen, C. Effect of Ba and Mn doping on microstructure and multiferroic properties of BiFeO3 ceramics. J. Alloys Compd. 2016, 678, 511–517. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Pakalniškis, A.; Niaura, G.; Zhaludkevich, D.V.; Zhaludkevich, A.L.; Latushka, S.I.; Kareiva, A. Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region. Ceram. Int. 2021, 47, 5399–5406. [Google Scholar] [CrossRef]
- Sati, P.C.; Kumar, M.; Chhoker, S. Phase evolution, magnetic, optical and dielectric properties of Zr-substituted Bi0.9Gd0.1FeO3 multiferroics. J. Am. Ceram. Soc. 2015, 98, 1884–1890. [Google Scholar] [CrossRef]
- Yun, Q.; Bai, Y.L.; Chen, J.; Gao, W.; Bai, A.; Zhao, S. Improved ferroelectric and fatigue properties in Ho doped BiFeO3 thin films. Mater. Lett. 2014, 129, 166–169. [Google Scholar] [CrossRef]
- Liu, J.; Deng, H.M.; Zhai, X.; Lin, T.; Meng, X.; Zhang, Y.; Chu, J. Influence of Zn doping on structural, optical and magnetic properties of BiFeO3 films fabricated by the sol-gel technique. Mater. Lett. 2014, 133, 49–52. [Google Scholar] [CrossRef]
- Yang, S.J.; Zhang, F.Q.; Xie, X.; Sun, H.; Zhang, L.; Fan, S. Enhanced leakage and ferroelectric properties of Zn-doped BiFeO3 thin films grown by sol-gel method. J. Alloys Compd. 2018, 734, 243–249. [Google Scholar] [CrossRef]
- Zhang, C.C.; Dai, J.Q.; Liang, X.L. Enhanced ferroelectric properties of (Zn, Ti) equivalent co-doped BiFeO3 films prepared via the sol-gel method. Ceram. Int. 2021, 47, 16776–16785. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, G.Q.; Ren, X.X.; Li, J.; Xue, M.; Ren, H.; Liu, W. Electric field dependence of ferroelectric stability in BiFeO3 thin films co-doped with Er and Mn. Ceram. Int. 2020, 46, 18690–18697. [Google Scholar] [CrossRef]
- Kan, D.; Pálová, L.; Anbusathaiah, V.; Cheng, C.J.; Fujino, S.; Nagarajan, V.; Takeuchi, I. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 2010, 20, 1108–1115. [Google Scholar] [CrossRef]
- Emery, S.B.; Cheng, C.J.; Kan, D.; Rueckert, F.J.; Alpay, S.P.; Nagarajan, V.; Wells, B.O. Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl. Phys. Lett. 2010, 97, 152902. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Tan, G.Q.; Ren, H.J. Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol-gel process. Ceram Int. 2013, 39, 6223–6228. [Google Scholar] [CrossRef]
- Tao, H.; Lv, J.; Zhang, R.; Xiang, R.; Wu, J. Lead-free rare earth-modified BiFeO3 ceramics: Phase structure and electrical properties. Mater. Des. 2017, 120, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zeng, X.; Bi, D.; Guo, K.; Yao, Y.; Lu, S. Dielectric, ferroelectric, and magnetic properties of Sm-doped BiFeO3 ceramics prepared by a modified solid-state-reaction method. Materials 2018, 11, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.L.; Dai, J.Q. Prominent ferroelectric properties in Mn-doped BiFeO3 spin-coated thin films. J. Alloys Compd. 2021, 886, 161168. [Google Scholar] [CrossRef]
- Zhou, W.; Deng, H.; Cao, H.; He, J.; Liu, J.; Yang, P.; Chu, J. Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by a sol-gel technique. Mater. Lett. 2015, 144, 93–96. [Google Scholar] [CrossRef]
- Goian, V.; Kamba, S.; Greicius, S.; Nuzhnyy, D.; Karimi, S.; Reaney, I. Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi0. 85Nd0.15FeO3. J. Appl. Phys. 2011, 110, 074112. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Zhou, Y.; Zhang, W. Optical and magnetic properties of Sm-doped BiFeO3 nanoparticles around the morphotropic phase boundary region. AIP Adv. 2021, 11, 045223. [Google Scholar] [CrossRef]
- Li, W.; Hao, J.; Du, J.; Fu, P.; Sun, W.; Chen, C.; Chu, R. Electrical properties and luminescence properties of 0.96(K0.48Na0.52)(Nb0.95Sb0.05)–0.04Bi0.5(Na0.82K0.18)0.5ZrO3-xSm lead-free ceramics. J. Adv. Ceram. 2020, 9, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Jang, H.M.; Ryu, S.; Jo, M.H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006, 88, 042907. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.W. Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 2008, 103, 114104. [Google Scholar] [CrossRef]
- Iliev, M.N.; Abrashev, M.V.; Lee, H.G.; Popov, V.N.; Sun, Y.Y.; Thomsen, C.; Chu, C.W. Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys. Rev. B 1998, 57, 2872. [Google Scholar] [CrossRef]
- Singh, D.; Tabari, T.; Ebadi, M.; Trochowski, M.; Yagci, M.B.; Macyk, W. Efficient synthesis of BiFeO3 by the microwave-assisted sol-gel method: “A” site influence on the photoelectron chemical activity of perovskites. Appl. Surf. Sci. 2019, 471, 1017–1027. [Google Scholar] [CrossRef]
- Wang, J.; Luo, L.; Han, C.; Yun, R.; Tang, X.; Zhu, Y.; Feng, Z. The microstructure, electric, optical and photovoltaic properties of BiFeO3 thin films prepared by low temperature sol-gel method. Materials 2019, 12, 1444. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.B.; Liu, H.Y.; Wang, L.X.; Zhang, F.Q.; Zhang, F.; Zhu, L.; Fan, S. Phase transition and multiferroic properties of Zr-doped BiFeO3 thin films. J. Mater. Chem. C 2020, 48, 17307–17317. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Hong, Y.; Zhou, Z. Enhanced ferroelectricity and magnetism of quenched (1−x) BiFeO3-xBaTiO3 ceramics. J. Adv. Ceram. 2020, 9, 511–516. [Google Scholar] [CrossRef]
- Hanani, Z.; Merselmiz, S.; Danine, A.; Stein, N.; Mezzane, D.; Amjoud, M.B. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 2020, 9, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.H.; Song, G.L.; Chang, F.G. Investigation on dependence of BiFeO3 dielectric property on oxygen content. Chin. Phys. B 2010, 19, 077702. [Google Scholar]
- Ren, X.; Otsuka, K. Universal symmetry property of point defects in crystals. Phys. Rev. Lett. 2000, 85, 1016. [Google Scholar] [CrossRef] [Green Version]
- Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 2004, 3, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ren, X. Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging. Phys. Rev. B 2006, 73, 094121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Ren, X. In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals. Phys. Rev. B 2005, 71, 174108. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.Y.; Yan, Z.B.; Zhang, N.; Cheng, W.W.; Liu, J.M. Ferroelectric aging behaviors of BaTi0.995Mn0.005O3 ceramics: Grain size effects. Appl. Phys. A 2012, 107, 243–248. [Google Scholar] [CrossRef]
Sample | Space Group | Fraction (%) | Lattice Parameter | Rw (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Volume | ||||
BSFMx = 0 | R3c | 70.98 | 5.59 | 5.59 | 13.70 | 90 | 90 | 120 | 370.41 | 7.90 |
Pnma | 29.02 | 5.60 | 16.01 | 11.28 | 90 | 90 | 90 | 1010.60 | ||
BSFMx = 0.02 | R3c | 68.39 | 5.58 | 5.58 | 13.70 | 90 | 90 | 120 | 369.56 | 6.83 |
Pnma | 31.61 | 5.62 | 15.98 | 11.26 | 90 | 90 | 90 | 1010.75 | ||
BSFMx = 0.04 | R3c | 69.06 | 5.58 | 5.58 | 13.66 | 90 | 90 | 120 | 368.67 | 7.40 |
Pnma | 30.94 | 5.58 | 16.06 | 11.30 | 90 | 90 | 90 | 1012.96 | ||
BSFMx = 0.06 | R3c | 67.06 | 5.58 | 5.58 | 13.67 | 90 | 90 | 120 | 368.65 | 7.17 |
Pnma | 32.94 | 5.56 | 16.06 | 11.28 | 90 | 90 | 90 | 1007.00 |
Raman Modes (cm−1) | BSFMx = 0 | BSFMx = 0.02 | BSFMx = 0.04 | BSFMx = 0.06 |
---|---|---|---|---|
E | 76.67 | 76.99 | 77.392 | 78.053 |
E | 112.61 | 112.45 | 112.03 | 112.80 |
A1-1 | 141.76 | 141.88 | 142.64 | 143.31 |
A1-2 | 171.43 | 171.05 | 172.11 | 172.89 |
pnma | 200.74 | 201.38 | 203.34 | 205.78 |
A1-3 | 226.61 | 227.47 | 230.80 | 234.49 |
E | 251.23 | 253.53 | 259.69 | 264.92 |
E | 273.72 | 275.8 | 286.47 | --- |
pnma | 298.05 | 299.78 | 313.95 | 294.87 |
E | 348.13 | 353.32 | 343.83 | --- |
E | 372.68 | 380.91 | 374.02 | 361.13 |
pnma | 397.33 | 411.95 | 406.72 | 394.90 |
A1-4 | 428.90 | 442.21 | 440.26 | 432.93 |
E | 459.09 | 469.92 | 470.06 | 465.64 |
pnma | 484.76 | 496.11 | 497.29 | 495.72 |
E | 535.62 | 525.24 | 527.48 | 527.32 |
E | 600.15 | 587.81 | 593.70 | 595.79 |
pnma | 624.89 | 616.55 | 622.52 | 621.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Z.; Ma, Z.; Wang, L.; Guo, X.; Liu, Y.; Yao, B.; Zhang, F.; Zhu, L. Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films. Nanomaterials 2022, 12, 108. https://doi.org/10.3390/nano12010108
Wang Y, Li Z, Ma Z, Wang L, Guo X, Liu Y, Yao B, Zhang F, Zhu L. Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films. Nanomaterials. 2022; 12(1):108. https://doi.org/10.3390/nano12010108
Chicago/Turabian StyleWang, Yangyang, Zhaoyang Li, Zhibiao Ma, Lingxu Wang, Xiaodong Guo, Yan Liu, Bingdong Yao, Fengqing Zhang, and Luyi Zhu. 2022. "Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films" Nanomaterials 12, no. 1: 108. https://doi.org/10.3390/nano12010108
APA StyleWang, Y., Li, Z., Ma, Z., Wang, L., Guo, X., Liu, Y., Yao, B., Zhang, F., & Zhu, L. (2022). Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films. Nanomaterials, 12(1), 108. https://doi.org/10.3390/nano12010108