Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials
Abstract
:1. Introduction
2. Device Performance and Stability of Inorganic Hole Transport Materials-Based PSCs
2.1. Nickel Oxide
2.2. Copper Thiocyanate
2.3. Copper Iodide
2.4. Copper Oxide
2.5. Delafossites
2.6. Copper Sulfide
2.7. Cobalt Oxide
2.8. Chromium Oxide
2.9. Molybdenum Oxide
2.10. Vanadium Oxide
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Renewable Energy Lab. Photovoltaic Research. Available online: http://www.nrel.gov/pv/ (accessed on 15 December 2021).
- Hwang, T.; Lee, B.; Kim, J.; Lee, S.; Gil, B.; Yun, A.J.; Park, B. From Nanostructural Evolution to Dynamic Interplay of Constituents: Perspectives for Perovskite Solar Cells. Adv. Mater. 2018, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, D.; Kim, S.; Park, J.; Dravid, V.P.; Shin, B. Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing. Adv. Mater. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Zuo, C.; Bolink, H.; Han, H.; Huang, J.; Cahen, D.; Ding, L. Advances in Perovskite Solar Cells. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Perrin, L.; Lemercier, T.; Planès, E.; Berson, S.; Flandin, L. Perovskite Inverted Solar Cells: Impact of Hole Transport Layer and Anti-Solvent Ejection Time. In Proceedings of the IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1324–1327. [Google Scholar] [CrossRef]
- Lemercier, T.; Perrin, L.; Planès, E.; Berson, S.; Flandin, L. A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells. Energies 2020, 13, 3794. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Li, W.; Hu, X.; Sun, K.; Zang, Z. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 2019, 7, 26421. [Google Scholar] [CrossRef]
- Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P. A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1800882. [Google Scholar] [CrossRef]
- Gil, B.; Yun, A.J.; Lee, Y.; Kim, J.; Lee, B.; Park, B. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electron. Mater. Lett. 2019, 15, 505–524. [Google Scholar] [CrossRef]
- Akin, S.; Liu, Y.; Dar, M.I.; Zakeeruddin, S.M.; Gratzel, M.; Turand, S.; Sonmezoglu, S. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for lowcost perovskite solar cells with superior stability. J. Mater. Chem. A 2018, 6, 20327. [Google Scholar] [CrossRef]
- Kim, J.; Yun, A.J.; Gil, B.; Lee, Y.; Park, B. Triamine-Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yun, A.J.; Kim, J.; Gil, B.; Woo, H.; Park, K.; Cho, J.; Park, B. Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 50418–50425. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.J.; Park, I.J.; Larson, B.W.; Dunfield, S.P.; Xiao, C.; Kim, J.; Tong, J.; Boonmongkolras, P.; Ji, S.G.; et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 2020, 368, 155–160. [Google Scholar] [CrossRef]
- Hwang, T.; Cho, D.; Kim, J.; Kim, J.; Lee, S.; Lee, B.; Kim, K.H.; Hong, S.; Kim, C.; Park, B. Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 2016, 25, 91–99. [Google Scholar] [CrossRef]
- Nejand, B.A.; Ahmadi, V.; Shahverdi, H.R. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 21807–21818. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, A.; Cai, F.; Tao, L.; Zhou, Y.; Zhao, Z.; Chen, Q.; Cheng, Y.-B.; Zhou, H. Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 2017, 5, 6597–6605. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.-W.; Ahn, T.K.; Noh, J.H.; Yoon, S.C.; et al. Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Lin, F.; He, H.; Mao, J.; Wong, K.S.; Jen, A.K.-Y.; Choy, W.C.H. Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano 2016, 10, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Chen, C.-C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 2017, 10, 1942. [Google Scholar] [CrossRef]
- Zhao, B.; Lee, L.C.; Yang, L.; Pearson, A.J.; Lu, H.; She, X.-J.; Cui, L.; Zhang, K.H.L.; Hoye, R.L.Z.; Karani, A.; et al. In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 41849–41854. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Jeong, S.; Bae, C.; Park, N.-G.; Shin, H. Perovskite Solar Cells with Inorganic Electron- and HoleTransport Layers Exhibiting Long-Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air. Adv. Mater. 2018, 30, 1801010. [Google Scholar] [CrossRef] [PubMed]
- Koushik, D.; Jost, M.; Ducinskas, A.; Burgess, C.; Zardetto, V.; Weijtens, C.; Verheijen, M.A.; Kessels, W.M.M.; Albrecht, S.; Creatore, M. Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. J. Mater. Chem. C 2019, 7, 12532. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.W.; Chueh, C.-C.; Jen, A.K.-Y. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874–7880. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Liu, K.; Xu, R.; Li, M.; Azam, M.; Ren, K.; Liu, J.; Sun, Y.; Wang, Z.; Cao, D.; et al. Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 2570. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater. 2017, 29, 1701073. [Google Scholar] [CrossRef]
- Nie, W.; Tsai, H.; Blancon, J.-C.; Liu, F.; Stoumpos, C.C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; et al. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Adv. Mater. 2018, 30, 1703879. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, F.-Z.; Feng, X.-Y.; Djurišic, A.B.; Chan, W.K.; He, Z.-B. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cell. Adv. Energy Mater. 2017, 7, 1700722. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Deng, S.; Tam, A.; Xu, P.; Wong, M.; Kwok, H.-S. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci. 2017, 4, 1700463. [Google Scholar] [CrossRef]
- Lee, P.-H.; Li, B.-T.; Lee, C.-F.; Huang, Z.-H.; Huang, Y.-C.; Su, W.-F. High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process. Sol. Energy Mater. Sol. Cells 2020, 208, 110352. [Google Scholar] [CrossRef]
- Madhavan, V.E.; Zimmermann, I.; Roldán-Carmona, C.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazeeruddin, M.K. Copper Thiocyanate Inorganic HoleTransporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1112–1117. [Google Scholar] [CrossRef]
- Jung, M.; Kim, Y.C.; Jeon, N.J.; Yang, W.S.; Seo, J.; Noh, J.H.; Seok, S.I. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. ChemSusChem 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepalage, G.A.; Meyer, S.; Pascoe, A.; Scully, A.D.; Huang, F.; Bach, U.; Cheng, Y.-B.; Spiccia, L. Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis. Adv. Funct. Mater. 2015, 25, 5650–5661. [Google Scholar] [CrossRef]
- Sun, W.; Ye, S.; Rao, H.; Li, Y.; Liu, Z.; Xiao, L.; Chen, Z.; Bian, Z.; Huang, C. Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 2016, 8, 15954. [Google Scholar] [CrossRef]
- Ramachandran, K.; Jeganathan, C.; Karuppuchamy, S. Electrodeposition of nanostructured bilayer CuI@CuSCN as hole transport material for highly efficient inverted perovskite solar cells. J. Alloys Compd. 2021, 881, 160530. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Ye, S.; Rao, H.; Yan, W.; Peng, H.; Li, Y.; Liu, Z.; Wang, S.; Chen, Z.; et al. High-performance inverted planar heterojunction perovskite solar cells based on a solutionprocessed CuOx hole transport layer. Nanoscale 2016, 8, 10806. [Google Scholar] [CrossRef]
- Rao, H.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3xClx solar cells by an effective Cl doping method. Nano Energy 2016, 27, 51–57. [Google Scholar]
- Yu, Z.-K.; Fu, W.-F.; Liu, W.-Q.; Zhang, Z.-Q.; Liu, Y.-J.; Yan, J.-L.; Ye, T.; Yang, W.-T.; Li, H.-Y.; Chen, H.-Z. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chin. Chem. Lett. 2017, 28, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhou, X.; Chen, S.; Zhao, X.; Dai, S.; Xu, B. Hydrophobic Cu2O Quantum Dots Enabled by Surfactant Modification as Top Hole-Transport Materials for Efficient Perovskite Solar Cells. Adv. Sci. 2019, 6, 1801169. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, Y.; Gil, B.; Yun, A.J.; Kim, J.; Woo, H.; Park, K.; Park, B. A Cu2O−CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation. ACS Appl. Energy Mater. 2020, 3, 7572–7579. [Google Scholar] [CrossRef]
- Igbari, F.; Li, M.; Hu, Y.; Wang, Z.-K.; Liao, L.-S. A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 1326. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Zhu, H.; Chueh, C.-C.; Chen, W.; Yang, S.; Jen, A.K.-Y. Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1702762. [Google Scholar] [CrossRef]
- Jeong, S.; Seo, S.; Shin, H. p-Type CuCrO2 particulate films as the hole transporting layer for CH3NH3PbI3 perovskite solar cells. RSC Adv. 2018, 8, 27956. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Thampy, S.; Dunlap-Shohl, W.A.; Xu, W.; Zheng, Y.; Cao, F.-Y.; Cheng, Y.-J.; Malko, A.V.; Mitzi, D.B.; Hsu, J.W.P. Mg Doped CuCrO2 as Efficient Hole Transport Layers for Organic and Perovskite Solar Cells. Nanomaterials 2019, 9, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, H.; Chen, W.; Jen, A.K.-Y. CuGaO2: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2017, 29, 1604984. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Wang, S.; Zheng, X.; Wu, Y.; Yuan, N.; Zhang, W.-H.; Liu, S. Design of an Inorganic Mesoporous Hole-Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Adv. Mater. 2018, 30, 1805660. [Google Scholar] [CrossRef]
- Akin, S.; Sadegh, F.; Turan, S.; Sonmezoglu, S. Inorganic CuFeO2 Delafossite Nanoparticles as Effective Hole Transport Materials for Highly Efficient and Long-Term Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 45142–45149. [Google Scholar] [CrossRef]
- Rao, H.; Sun, W.; Ye, S.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Huang, C. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 7800–7805. [Google Scholar] [CrossRef]
- Shalan, A.E.; Oshikiri, T.; Narra, S.; Elshanawany, M.M.; Ueno, K.; Wu, H.-P.; Nakamura, K.; Shi, X.; Diau, E.W.-G.; Misawa, H. Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High Performance Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 33592–33600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, A.; Shukla, S.; Lew, J.H.; Shukla, S.; Bruno, A.; Gupta, D.; Baikie, T.; Patidar, R.; Akhter, Z.; Priyadarshi, A.; et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale 2018, 10, 2341. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Chen, C.-C.; Nazeeruddin, M.K.; Wu, C.-G. A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 13751. [Google Scholar] [CrossRef]
- Qin, P.; He, Q.; Yang, G.; Yu, X.; Xiong, L.; Fang, G. Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 2018, 10, 93–99. [Google Scholar] [CrossRef]
- Tseng, Z.-L.; Chen, L.-C.; Chiang, C.-H.; Chang, S.-H.; Chen, C.-C.; Wu, C.-G. Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy 2016, 139, 484–488. [Google Scholar] [CrossRef]
- Im, K.; Heo, J.H.; Im, S.H.; Kim, J. Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transportingmaterial with high moisture stability for CH3NH3PbI3 perovskite solar cells. Chem. Eng. J. 2017, 330, 698–705. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, Y.; Li, Y.; Chen, W.; Hu, X.; Zhang, S. Solution preparation of molybdenum oxide on graphene: A hole transport layer for efficient perovskite solar cells with a 1.12 V high open-circuit voltage. J. Mater. Sci. Mater. Electron. 2020, 31, 6248–6254. [Google Scholar] [CrossRef]
- Li, D.; Tong, C.; Ji, W.; Fu, Z.; Wan, Z.; Huang, Q.; Ming, Y.; Mei, A.; Hu, Y.; Rong, Y.; et al. Vanadium Oxide Post-Treatment for Enhanced Photovoltage of Printable Perovskite Solar Cells. ACS Sustain. Chem. Eng. 2019, 7, 2619–2625. [Google Scholar] [CrossRef]
- Yao, X.; Qi, J.; Xu, W.; Jiang, X.; Gong, X.; Cao, Y. Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega 2018, 3, 1117–1125. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, X.; Luo, Q.; Zhao, X.; Zhou, D.; Han, J.; Hao, F.; Tai, M.; Li, J.; Liu, P.; et al. Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 31384–31393. [Google Scholar] [CrossRef]
- Bush, K.A.; Palmstrom, A.F.; Yu, Z.J.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.Z.; Bailie, C.D.; Leijtens, T.; et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Li, L.; Gibson, E.A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt, A.; Sun, L. Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE. Adv. Mater. 2010, 22, 1759–1762. [Google Scholar] [CrossRef]
- Manders, J.R.; Tsang, S.-W.; Hartel, M.J.; Lai, T.-H.; Chen, S.; Amb, C.M.; Reynolds, J.R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001. [Google Scholar] [CrossRef]
- Liu, S.; Liu, R.; Chen, Y.; Ho, S.; Kim, J.H.; So, F. Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes. Chem. Mater. 2014, 26, 4528–4534. [Google Scholar] [CrossRef]
- Park, H.H.; Jayaraman, A.; Heasley, R.; Yang, C.; Hartle, L.; Mankad, R.; Haight, R.; Mitzi, D.B.; Gunawan, O.; Gordon, R.G. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties. Appl. Phys. Lett. 2014, 105, 202101. [Google Scholar] [CrossRef]
- Park, H.H.; Heasley, R.; Gordon, R.G. Atomic layer deposition of Zn(O,S) thin films with tunable electrical properties by oxygen annealing. Appl. Phys. Lett. 2013, 102, 132110. [Google Scholar] [CrossRef]
- Park, H.H. Inorganic Materials by Atomic Layer Deposition for Perovskite Solar Cells. Nanomaterials 2021, 11, 88. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Yun, A.J.; Gil, B.; Park, B. Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 46818–46824. [Google Scholar] [CrossRef] [PubMed]
- Inudo, S.; Miyake, M.; Hirato, T. Electrical properties of CuI films prepared by spin coating. Phys. Status Solidi A 2013, 210, 2395–2398. [Google Scholar] [CrossRef] [Green Version]
- Perera, V.P.S.; Tennakone, K. Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Sol. Energy Mater. Sol. Cells 2003, 79, 249–255. [Google Scholar] [CrossRef]
- Eom, T.; Kim, S.; Agbenyeke, R.E.; Jung, H.; Shin, S.M.; Lee, Y.K.; Kim, C.G.; Chung, T.-M.; Jeon, N.J.; Park, H.H.; et al. Copper Oxide Buffer Layers by Pulsed-Chemical Vapor Deposition for Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2020, 8, 2001482. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef]
- Nie, X.; Wei, S.-H.; Zhang, S.B. Bipolar Doping and Band-Gap Anomalies in Delafossite Transparent Conductive Oxides. Phys. Rev. Lett. 2002, 88, 066405. [Google Scholar] [CrossRef]
- Gillen, R.; Robertson, J. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange. Phys. Rev. B 2011, 84, 035125. [Google Scholar] [CrossRef] [Green Version]
- Gil, B.; Kim, J.; Yun, A.J.; Park, K.; Cho, J.; Park, M.; Park, B. CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials 2020, 10, 1669. [Google Scholar] [CrossRef]
- Yu, M.; Draskovic, T.I.; Wu, Y. Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates. Inorg. Chem. 2014, 53, 5845–5851. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, D.; Wang, H.; Zhang, W.; Zeng, X.; Ming, L.; Chen, W.; Xu, X.; Cui, J.; Wang, M.; et al. Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2014, 2, 2968. [Google Scholar] [CrossRef]
- Yu, M.; Draskovic, T.I.; Wu, Y. Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16, 5026. [Google Scholar] [CrossRef] [PubMed]
- Galdikas, A.; Mironas, A.; Strazdiene, V.; Setkus, A.; Ancutiene, I.; Janickis, V. Room-temperature-functioning ammonia sensor based on solid-state CuS films. Sens. Actuators B 2000, 67, 76–83. [Google Scholar] [CrossRef]
- Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.; Nakayama, T.; Aono, M. Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 2003, 82, 3032. [Google Scholar] [CrossRef]
- Li, J.; Jiu, T.; Tao, G.-H.; Wang, G.; Sun, C.; Li, P.; Fang, J.; He, L. Manipulating surface ligands of Copper Sulfide nanocrystals: Synthesis, characterization, and application to organic solar cells. J. Colloid Interface Sci. 2014, 419, 142–147. [Google Scholar] [CrossRef]
- Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Adv. Mater. 2012, 24, 5408–5427. [Google Scholar] [CrossRef]
- Park, H.H.; Larrabee, T.J.; Ruppalt, L.B.; Culbertson, J.C.; Prokes, S.M. Tunable Electrical Properties of Vanadium Oxide by HydrogenPlasma-Treated Atomic Layer Deposition. ACS Omega 2017, 2, 1259–1264. [Google Scholar] [CrossRef]
- Hwang, S.; Larina, L.; Lee, H.; Kim, S.; Choi, K.S.; Jeon, C.; Ahn, B.T.; Shin, B. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface. ACS Appl. Mater. Interfaces 2018, 10, 20920–20928. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Heasley, R.; Sun, L.; Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Sinsermsuksakul, P.; Chua, D.; Buonassisi, T.; et al. Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Park, H.H.; Kim, J.; Kim, G.; Jung, H.; Kim, S.; Moon, C.S.; Lee, S.J.; Shin, S.S.; Hao, X.; Yun, J.S.; et al. Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications. Small Methods 2020, 4, 2000074. [Google Scholar] [CrossRef]
- Jung, H.; Kim, G.; Jang, G.S.; Lim, J.; Kim, M.; Moon, C.S.; Hao, X.; Jeon, N.J.; Yun, J.S.; Park, H.H.; et al. Transparent Electrodes with Enhanced Infrared Transmittance for Semitransparent and Four-Terminal Tandem Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 30497–30503. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H. Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells. Electron. Mater. Lett. 2021, 17, 1–15. [Google Scholar] [CrossRef]
- Park, H.H.; Song, S.; Seo, J. Perspective: Approaches for layers above the absorber in perovskite solar cells for semitransparent and tandem applications. Mater. Today Energy 2021, 21, 100729. [Google Scholar] [CrossRef]
Material | Method | Structure | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref] |
---|---|---|---|---|---|---|---|---|
NiO | Sputtering | n-i-p | FTO/TiO2/MAPbI3−xClx/NiOx/Ni | 17.9 | 0.77 | 53.0 | 7.3 | TMU, 2015 [17] |
NiO | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/MAPbI3−xClx/NiOx/Au | 19.5 | 0.88 | 53.1 | 9.1 | Peking, 2017 [18] |
NiO | PLD | p-i-n | ITO/NiOx/MAPbI3/PCBM/LiF/Al | 20.2 | 1.06 | 81.3 | 17.3 | KRICT, 2015 [19] |
NiO | Solution Process | p-i-n | ITO/NiOx/MAPbI3/C60/Bis-C60/Ag | 21.8 | 1.03 | 78.4 | 17.6 | Hong Kong UST, UW, 2016 [20] |
Li,Mg:NiOx | Spray Coating | p-i-n | FTO/Li,Mg:NiOx/FAPbI3/PCBM/TiOx/Ag | 23.1 | 1.10 | 81.4 | 20.7 | NIMS, 2017 [21] |
NiO | Spatial ALD | p-i-n | ITO/NiOx/FA0.2MA0.8PbI3/PC61BM/Al | 23.0 | 1.08 | 81.0 | 17.1 | Cambridge, 2018 [22] |
NiO | ALD | p-i-n | FTO/NiO/Cs0.05MA0.95PbI3/PCBM/BCP/AZO/Ag/Al2O3 | 22.5 | 1.03 | 80.8 | 18.8 | SKKU, 2018 [23] |
NiO | PEALD | p-i-n | ITO/NiO/Cs0.05(FA0.83MA0.17)Pb(I0.83Br0.17)3/C60/BCP/Cu | 21.8 | 1.07 | 73.4 | 17.1 | Eindhoven, 2019 [24] |
Cu:NiOx | Combustion sol-gel | p-i-n | ITO/Cu:NiOx/MAPbI3/Bis-C60/C60/Ag | 22.2 | 1.05 | 76.0 | 17.7 | UW, 2015 [25] |
Cu:NiOx | Spin Coating | p-i-n | FTO/Cu:NiOx/MAPbI3−xClx/PC61BM/ZrAcac/Al | 23.7 | 1.12 | 77.1 | 20.1 | CAS, 2017 [26] |
Li0.05Mg0.15Ni0.8O | Spray Pyrolysis | p-i-n | FTO/Li0.05Mg0.15Ni0.8O/MAPbI3/Ti(Nb)Ox/Ag | 22.8 | 1.11 | 77.1 | 19.6 | NIMS, 2017 [27] |
Li:NiOx | Spin Coating | p-i-n | ITO/Li:NiOx/MAPbI3−xClx/PCBM/Al | 21.8 | 1.12 | 73.6 | 18.0 | Los Alamos, 2018 [28] |
Cs:NiOx | Spin Coating | p-i-n | FTO/Cs:NiOx/MAPbI3/PCBM/ZrAcac/Ag | 21.8 | 1.12 | 79.3 | 19.4 | Southern UST, 2017 [29] |
Mg:NiOx | Sputtering | p-i-n | ITO/Mg:NiOx/MAPbI3/PCBM/ZnMgO/Al | 21.3 | 1.08 | 79.0 | 18.2 | Hong Kong UST,2017 [30] |
Co:NiOx | Spin Coating | p-i-n | FTO/Co:NiOx/MAPbI3/PCBM/Ag | 20.5 | 1.09 | 79.8 | 17.8 | NTU, 2020 [31] |
CuSCN | Doctor blading | n-i-p | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | 21.8 | 1.10 | 69.0 | 16.6 | EPFL, 2016 [32] |
CuSCN | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | 23.1 | 1.04 | 75.3 | 18.0 | UNIST, 2016 [33] |
CuSCN | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/CsFAMAPbI3−xBrx/CuSCN/rGO/Au | 23.4 | 1.14 | 77.5 | 20.4 | EPFL, 2017 [34] |
CuI | Rapid Doctor Blading | n-i-p | FTO/bl-TiO2/MAPbI3/CuI/Graphite | 16.7 | 0.78 | 57.0 | 7.5 | Monash, 2015 [35] |
CuI | Spin Coating | p-i-n | ITO/CuI/MAPbI3/C60/BCP/Ag | 22.8 | 1.01 | 73.0 | 16.8 | Peking, 2016 [36] |
CuI-CuSCN | Electrodeposition | p-i-n | ITO/CuI/CuSCN/MAPbI3/PC61BM/C | 20.3 | 1.10 | 78.0 | 20.4 | Allagappa, 2021 [37] |
CuOx | Spin Coating | p-i-n | ITO/CuOx/MAPbI3/C60/BCP/Ag | 23.2 | 0.99 | 74.4 | 17.1 | Peking 2016 [38] |
CuOx | Spin Coating | p-i-n | FTO/CuOx/MAPbI3−xClx/PCBM/C60/BCP/Ag | 22.5 | 1.11 | 75.8 | 19.0 | Peking, 2016 [39] |
CuOx | Spin Coating | p-i-n | ITO/CuOx/MAPbI3/PC61BM/ZnO/Al | 22.4 | 1.03 | 76.0 | 17.4 | Zhejiang, 2017 [40] |
Cu2O QD | Spin Coating | n-i-p | FTO/bl-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Cu2O/Au | 22.2 | 1.15 | 74.2 | 18.9 | Southern UST, 2019 [41] |
Cu2O-CuSCN | Spin Coating | n-i-p | ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45/Cu2O-CuSCN/Au | 23.2 | 1.05 | 78.4 | 19.2 | SNU, 2020 [42] |
CuAlO2 | Sputtering | p-i-n | ITO/CuAlO2/PEDOT:PSS/MAPbI3−xClx/PCBM/Ag | 22.0 | 0.88 | 75.0 | 14.5 | Soochow, 2016 [43] |
CuCrO2 | Spin Coating | p-i-n | ITO/CuCrO2/MAPbI3/PCBM/BCP/Ag | 21.9 | 1.07 | 81.0 | 19.0 | City Univ. Hong Kong, 2018 [44] |
CuCrO2 | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/CuCrO2/ Au | 23.2 | 1.04 | 69.0 | 16.7 | Mehmetbey, 2018 [12] |
Mg: CuCrO2 | Spin Coating | p-i-n | FTO/Mg: CuCrO2/MAPbI3/PCBM/BCP/Ag | 18.4 | 1.00 | 71.3 | 13.1 | SKKU, 2018 [45] |
Mg: CuCrO2 | Spin Coating | p-i-n | ITO/Mg: CuCrO2/MAPbI3/C60/BCP/Ag | 19.4 | 1.01 | 71.9 | 14.1 | UT Dallas, 2019 [46] |
CuGaO2 | Spin Coating | n-i-p | FTO/bl-TiO2/MAPbI3−xClx/CuGaO2/Au | 21.7 | 1.11 | 77.0 | 18.5 | UW, 2017 [47] |
CuGaO2 | Spin Coating | p-i-n | FTO/NiOx/mp-CuGaO2/CsFAPb(I,Br)3/PC61BM/BCP/Ag | 22.2 | 1.13 | 80.0 | 20.0 | Shanxi Normal Univ., 2018 [48] |
CuFeO2 | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/CsFAMA/CuFeO2/Au | 23.6 | 1.01 | 65.0 | 15.6 | KMU, 2019 [49] |
CuS | Spin Coating | p-i-n | ITO/CuS/MAPbI3/C60/BCP/Ag | 22.3 | 1.02 | 71.2 | 16.2 | BNL, 2016 [50] |
CoOx | Spin Coating | p-i-n | ITO/CoOx/MAPbI3/PCBM/Ag | 20.3 | 0.95 | 75.5 | 14.5 | Hokkaido Univ., 2016 [51] |
Co3O4 | Screen Printing | n-i-p | FTO/bl-TiO2/mp-TiO2/ZrO2/MAPbI3/Co3O4/C | 23.4 | 0.88 | 64.0 | 13.3 | NTU, 2018 [52] |
LiCoO2 | Sputtering | p-i-n | ITO/LiCoO2/MAPbI3/C60/BCP/Ag | 22.5 | 1.06 | 80.0 | 19.1 | NCU, 2018 [53] |
Cu:CrOx | Spin Coating | p-i-n | FTO/Cu:CrOx/MAPbI3/PCBM/BCP/Ag | 21.4 | 1.08 | 76.0 | 17.7 | Wuhan Univ., 2018 [54] |
MoOx | Thermal Evaporation | p-i-n | ITO/MoO3/MAPbI3/PCBM/Ag | 18.8 | 0.99 | 71.0 | 13.1 | NTUT, 2016 [55] |
Ti:MoO2 | Spin Coating | n-i-p | FTO/bl-TiO2/mp-TiO2/MAPbI3/Ti:MoO2/Au | 20.1 | 1.02 | 77.3 | 15.8 | Kyung Hee Univ., 2017 [56] |
MoOx:RGO | Spin Coating | p-i-n | ITO/MoOx:RGO/MAPbI3/PCBM/BCP/Ag | 21.0 | 1.12 | 77.0 | 18.2 | NU, 2020 [57] |
VOx | Post-Treatment | n-i-p | FTO/bl-TiO2/mp-TiO2/ZrO2/MAPbI3/VOx/C | 24.2 | 0.95 | 68.5 | 15.8 | Huazhong UST, 2019 [58] |
Cs:VOx | Spun-Cast | p-i-n | ITO/Cs:VOx/MAPbI3/PC61BM/BCP/Ag | 20.7 | 0.92 | 76.5 | 14.5 | South China Univ. Tech., 2018 [59] |
HTL | Device Stack | Encapsulated | Conditions | Continuous 1 SUN Illumination? | Duration | η Maintained | Institute, Year [Ref] |
---|---|---|---|---|---|---|---|
NiOx | FTO/NiOx/MAPbI3/PCBM/CNT:PEI | Y | 60 °C, 60% | N | 500 h | 85% | Tsinghua, 2018 [60] |
NiOx | ITO/NiO/Cs0.17FA0.83Pb(Br0.17I0.83)3/LiF/PC60BM/SnO2/ZnSnOx/ITO/LiF/Ag | N | 35 °C, 40%, MPPT | Y | 1000 h | 100% | Stanford, 2017 [61] |
NiOx | FTO/NiOx/Cs0.05MA0.95PbI3/PCBM/BCP/ ALD-AZO/Ag | Y | RT, 20–60%,/85 °C, MPPT | Y | 500 h | 99.5/87% | SKKU, 2018 [23] |
Li,Mg:NiOx | FTO/Li,Mg:NiOx/FAPbI3/PCBM/TiOx/Ag | Y | RT, MPPT | Y | 500 h | >85% | NIMS, 2017 [21] |
CuSCN | FTO/bl-TiO2/mp-TiO2/CsFAMAPbI3–xBrx/CuSCN/rGO/Au | N | 60 °C, N2, MPPT | Y | 1000 h | >95% | EPFL, 2017 [34] |
CuI | ITO/CuI/MAPbI3/C60/BCP/Ag | N | 25%, RT | N | 300 h | 93% | Peking, 2016 [36] |
CuOx | ITO/CuOx/MAPbI3/C60/BCP/Ag | N | Air | N | 200 h | ~90% | Peking, 2016 [38] |
Cu2O QD | FTO/bl-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Cu2O/Au | N | 30%, Air | N | 720 h | >90% | Southern UST, 2019 [41] |
Cu2O-CuSCN | ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45/Cu2O-CuSCN/Au | Y | 85 °C, 85% | N | 720 h | >90% | SNU, 2020 [42] |
CuCrO2 | ITO/CuCrO2/MAPbI3/PCBM/BCP/Ag | N | Ar | Y | 1000 h | ~95% | City Univ. Hong Kong, 2018 [44] |
CuCrO2 | FTO/bl-TiO2/mp-TiO2/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/ CuCrO2/ Au | N | RT, N2, MPPT | Y | 500 h | 88% | Mehmetbey, 2018 [12] |
CuGaO2 | FTO/NiOx/mp-CuGaO2/CsFAPb(I,Br)3/PC61BM/BCP/Ag | N | 85 °C, N2, | N | 1000 h | >80% | Shanxi Normal Univ., 2018 [48] |
CuGaO2 | FTO/bl-TiO2/MAPbI3−xClx/CuGaO2/Au | N | 25 °C, 30–55%, | N | 720 h | >90% | UW, 2017 [47] |
CuFeO2 | FTO/bl-TiO2/mp-TiO2/CsFAMA/CuFeO2/Au | N | N2, MPPT | Y | 1000 h | 85% | KMU, 2019 [49] |
CuS | ITO/CuS/MAPbI3/C60/BCP/Ag | N | Air | N | 260 h | >90% | BNL, 2016 [50] |
LiCoO2 | ITO/LiCoO2/MAPbI3/C60/BCP/Ag | N | 90 °C, Inert Atmosphere | N | 120 h | >90% | NCU, 2018 [53] |
Cu:CrOx | FTO/Cu:CrOx/MAPbI3/PCBM/BCP/Ag | N | 20 °C, 30%, | N | 190 h | >70% | Wuhan Univ., 2018 [54] |
Cs:VOx | ITO/Cs:VOx/MAPbI3/PC61BM/BCP/Ag | N | RT, 50–70%, Air | N | 720 h | 94% | South China Univ. Tech., 2018 [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.H. Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials. Nanomaterials 2022, 12, 112. https://doi.org/10.3390/nano12010112
Park HH. Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials. Nanomaterials. 2022; 12(1):112. https://doi.org/10.3390/nano12010112
Chicago/Turabian StylePark, Helen Hejin. 2022. "Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials" Nanomaterials 12, no. 1: 112. https://doi.org/10.3390/nano12010112
APA StylePark, H. H. (2022). Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials. Nanomaterials, 12(1), 112. https://doi.org/10.3390/nano12010112