Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthesis of CsPbI3 Nanocrystals
2.2. Fabrication and Characterization of the Device
2.3. Device Design and Simulations
3. Results and Discussion
3.1. Design and Simulations
3.1.1. Description of the Device
3.1.2. Design of Spacer
3.1.3. Effect of the MIE Resonator
3.2. Optical Characterization and the Experimental Setup
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Gualdrón-Reyes, A.F.; Masi, S.; Mora-Seró, I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 2021, 3, 499–511. [Google Scholar] [CrossRef]
- Navarro Arenas, J.; Soosaimanickam, A.; Pashaei Adl, H.; Abargues, R.; Boix, P.P.; Rodríguez-Cantó, P.J.; Martínez-Pastor, J.P. Ligand-length modification in CsPbBr3 perovskite nanocrystals and bilayers with PbS quantum dots for improved photodetection performance. Nanomaterials 2020, 10, 1297. [Google Scholar] [CrossRef] [PubMed]
- Adl, H.P.; Gorji, S.; Muñoz-Matutano, G.; Alarcon, I.S.; Abargues, R.; Gualdron-Reyes, A.F.; Mora-Sero, I.; Martınez-Pastor, J.P. Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescence. J. Lumin. 2021, 240, 118453. [Google Scholar]
- Raja, S.N.; Bekenstein, Y.; Koc, M.A.; Fischer, S.; Zhang, D.; Lin, L.; Ritchie, R.O.; Yang, P.; Alivisatos, A.P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533. [Google Scholar] [CrossRef] [Green Version]
- Konidakis, I.; Karagiannaki, A.; Stratakis, E. Advanced composite glasses with metallic, perovskite, and two-dimensional nanocrystals for optoelectronic and photonic applications. Nanoscale 2022, 14, 2966. [Google Scholar] [CrossRef]
- Yan, F.; Tan, S.T.; Li, X.; Demir, H.V. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications. Small 2019, 15, 1902079. [Google Scholar] [CrossRef]
- Liu, X.K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef]
- Park, Y.S.; Guo, S.; Makarov, N.S.; Klimov, V.I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef] [PubMed]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, H.; Guo, H.; Deng, M.; Xu, T.; Gong, Z.; Li, X.; Hang, Z.H.; Wu, C.; Li, H.; et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev. 2019, 13, 1800081. [Google Scholar] [CrossRef] [Green Version]
- Adl, H.P.; Gorji, S.; Habil, M.K.; Suárez, I.; Chirvony, V.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Valencia, L.M.; de la Mata, M.; Hernández-Saz, J.; et al. Purcell enhancement and wavelength shift of emitted light by CsPbI3 perovskite nanocrystals coupled to hyperbolic metamaterials. ACS Photonics 2020, 7, 3152–3160. [Google Scholar] [CrossRef]
- Martinez-Pastor, J.P.; Adl, H.P.; Gorji, S.; Navarro-Arenas, J.; Munoz-Matutano, G.; Suarez, I.; Chirvony, V.S.; Gualdron-Reyes, A.F.; Mora-Sero, I. Lead halide perovskite nanocrystals: Optical properties and nanophotonics. In Low-Dimensional Materials and Devices; SPIE: Washington, DC, USA, 2021; Volume 11800, p. 1180013. [Google Scholar]
- Maier, S.A.; Atwater, H.A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 10. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V.M. Topological transitions in metamaterials. Science 2012, 336, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.H.; Sreekanth, K.V.; Strangi, G. Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement. JOSA B 2016, 33, 1038–1043. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Zhang, W.; Liang, Z.; Xu, Y. Unidirectional emission in an all-dielectric nanoantenna. J. Phys. Condens. Matter 2018, 30, 124002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I.; et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, J.; Deng, Z.; Hu, D.; Qin, F.; Li, X. Unidirectional enhanced dipolar emission with an individual dielectric nanoantenna. Nanomaterials 2019, 9, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualdron-Reyes, A.F.; Yoon, S.J.; Barea, E.M.; Agouram, S.; Munoz-Sanjose, V.; Melendez, A.; Nino-Gomez, M.E.; Mora-Sero, I. Controlling the phase segregation in mixed halide perovskites through nanocrystal size. ACS Energy Lett. 2018, 4, 54–62. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.; Wolff, C.M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 2018, 30, 4193–4201. [Google Scholar] [CrossRef]
- Barnes, W.L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661–699. [Google Scholar] [CrossRef]
- Zhang, S.; Martins, E.R.; Diyaf, A.G.; Wilson, J.I.B.; Turnbull, G.A.; Samuel, I.D.W. Calculation of the emission power distribution of microstructured oleds using the reciprocity theorem. Synth. Met. 2015, 205, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys. Rev. B 1983, 27, 985. [Google Scholar] [CrossRef]
- Suarez, I.; Wood, T.; Pastor, J.P.M.; Balestri, D.; Checcucci, S.; David, T.; Favre, L.; Claude, J.; Grosso, D.; Gualdron-Reyes, A.F.; et al. Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas. APL Mater. 2020, 8, 021109. [Google Scholar] [CrossRef]
- Checcucci, S.; Bottein, T.; Claude, J.B.; Wood, T.; Putero, M.; Favre, L.; Gurioli, M.; Abbarchi, M.; Grosso, D. Titania-Based Spherical Mie Resonators Elaborated by High-Throughput Aerosol Spray: Single Object Investigation. Adv. Funct. Mater. 2018, 28, 1801958. [Google Scholar] [CrossRef]
- Benisty, H.D.N.H.; Stanley, R.; Mayer, M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. JOSA A 1998, 15, 1192–1201. [Google Scholar] [CrossRef]
- Krecmarova, M.; Canet-Albiach, R.; Pashaei-Adl, H.; Gorji, S.; Munoz-Matutano, G.; Nesladek, M.; Martınez-Pastor, J.P.; Sanchez-Royo, J.F. Extrinsic effects on the optical properties of surface color defects generated in hexagonal boron nitride nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 46105–46116. [Google Scholar] [CrossRef]
- Potton, R.J. Reciprocity in optics. Rep. Prog. Phys. 2004, 67, 717. [Google Scholar] [CrossRef]
- Reed, C.E.; Giergiel, J.; Hemminger, J.C.; Ushioda, S. Dipole radiation in a multilayer geometry. Phys. Rev. B 1987, 36, 4990. [Google Scholar] [CrossRef]
- Rigneault, H.; Lemarchand, F.; Sentenac, A. Dipole radiation into grating structures. JOSA A 2000, 17, 1048–1058. [Google Scholar] [CrossRef]
- Janssen, O.T.A.; Wachters, A.J.H.; Urbach, H.P. Efficient optimization method for the light extraction from periodically modulated leds using reciprocity. Opt. Express 2010, 18, 24522–24535. [Google Scholar] [CrossRef]
- Chirvony, V.S.; Martinez-Pastor, J.P. Trap-limited dynamics of excited carriers and interpretation of the photoluminescence decay kinetics in metal halide perovskites. J. Phys. Chem. Lett. 2018, 9, 4955–4962. [Google Scholar] [CrossRef]
- Chirvony, V.S.; Sekerbayev, K.S.; Adl, H.P.; Suarez, I.; Taurbayev, Y.T.; Gualdron-Reyes, A.F.; Mora-Sero, I.; Martinez-Pastor, J.P. Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films. J. Lumin. 2020, 221, 117092. [Google Scholar] [CrossRef]
- Andres-Penares, D.; Navarro-Arenas, J.; Sánchez-Alarcón, R.I.; Abargues, R.; Martínez-Pastor, J.P.; Sánchez-Royo, J.F. Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals. Appl. Surf. Sci. 2021, 536, 147939. [Google Scholar] [CrossRef]
- De Melo, J.S.S.; Costa, T.; de Castro, C.S.; Maçanita, A.L. Photophysics of fluorescently labeled oligomers and polymers. Photochemistry 2013, 41, 59–126. [Google Scholar]
- Diroll, B.T.; Zhou, H.; Schaller, R.D. Low-temperature absorption, photoluminescence, and lifetime of cspbx3 (x = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2018, 28, 1800945. [Google Scholar] [CrossRef]
- Rutckaia, V.; Talalaev, V.; Heyroth, F.; Novikov, A.; Shaleev, M.; Petrov, M.; Schulze, D.; Schilling, J. Luminescence enhancement by collective MIE-resonances. In Active Photonic Platforms XI; SPIE: Washington, DC, USA, 2019; Volume 11081, p. 1108120. [Google Scholar]
- Chang, S.; Ushakova, E.V.; Litvin, A.P.; Cherevkov, S.A.; Sokolova, A.V.; Gets, D.; Berestennikov, A.; Makarov, S.; Chen, T.; Rogach, A.L.; et al. Tunable MIE resonances of tin-based iodide perovskite islandlike films with enhanced infrared photoluminescence. J. Phys. Chem. Lett. 2020, 11, 3332–3338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashaei Adl, H.; Gorji, S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Suárez, I.; Martínez-Pastor, J.P. Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna. Nanomaterials 2023, 13, 11. https://doi.org/10.3390/nano13010011
Pashaei Adl H, Gorji S, Gualdrón-Reyes AF, Mora-Seró I, Suárez I, Martínez-Pastor JP. Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna. Nanomaterials. 2023; 13(1):11. https://doi.org/10.3390/nano13010011
Chicago/Turabian StylePashaei Adl, Hamid, Setatira Gorji, Andrés F. Gualdrón-Reyes, Iván Mora-Seró, Isaac Suárez, and Juan P. Martínez-Pastor. 2023. "Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna" Nanomaterials 13, no. 1: 11. https://doi.org/10.3390/nano13010011
APA StylePashaei Adl, H., Gorji, S., Gualdrón-Reyes, A. F., Mora-Seró, I., Suárez, I., & Martínez-Pastor, J. P. (2023). Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna. Nanomaterials, 13(1), 11. https://doi.org/10.3390/nano13010011