Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of h-BN Layers
2.2. Transfer of h-BN Layers
2.3. Characterization
3. Results
3.1. A Growth Setup for Sequential-Pulsed CVD
3.2. Synthesis of h-BN Layers and Their Physical Characteristics
3.3. Effect of Growth Temperature on Crystallinity
3.4. Initial Growth Mode and Preferred Crystal Orientation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Wang, H.; Taychatanapat, T.; Hsu, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Palacios, T. BN/Graphene/BN transistors for RF applications. IEEE Electron Device Lett. 2011, 32, 1209–1211. [Google Scholar] [CrossRef] [Green Version]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Lee, G.H.; Jo, J.; Cheng, A.K.; Yoon, H.; Watanabe, K.; Taniguchi, T.; Kim, M.; Kim, P.; Yi, G.C. Molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride. 2D Mater. 2016, 3, 035029. [Google Scholar] [CrossRef]
- Lee, C.H.; Schiros, T.; Santos, E.J.G.G.; Kim, B.; Yager, K.G.; Kang, S.J.; Lee, S.; Yu, J.; Watanabe, K.; Taniguchi, T.; et al. Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics. Adv. Mater. 2014, 26, 2812–2817. [Google Scholar] [CrossRef]
- Oh, H.; Hong, Y.J.; Kim, K.-S.S.; Yoon, S.; Baek, H.; Kang, S.-H.H.; Kwon, Y.-K.K.; Kim, M.; Yi, G.-C.C. Architectured van der Waals epitaxy of ZnO nanostructures on hexagonal BN. NPG Asia Mater. 2014, 6, e145. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Oh, H.; Jo, J.; Lee, K.; Kim, M.; Yi, G.C. Transferable single-crystal gan thin films grown on chemical vapor-deposited hexagonal bn sheets. NPG Asia Mater. 2017, 9, e410. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, S.; Gao, G.; Pang, Y.; Yin, X.; Feng, X.; Zhu, L.; Bai, Y.; Chen, L.; Xiao, T.; et al. Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. ACS Nano 2018, 12, 4903–4908. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D.K.; Furchi, M.M.; Jarillo-Herrero, P.; Ford, M.J.; Aharonovich, I.; Englund, D. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 2017, 8, 705. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.; Brotons-Gisbert, M.; Koong, Z.X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B.D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021, 372, 1458–1462. [Google Scholar] [CrossRef]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6, 8583–8590. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, J.C.; Yun, S.J.; Kim, H.; Luong, D.H.; Kim, S.M.; Choi, S.H.; Yang, W.; Kong, J.; Kim, K.K.; et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 2014, 8, 8520–8528. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Yoo, H.; Hyun, J.K.; Oh, H.; Tchoe, Y.; Lee, K.; Baek, H.; Kim, M.; Yi, G.C. Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots. Adv. Mater. 2016, 28, 7688–7694. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.Y.; Griep, M.H.; Mallick, G.; Tsang, S.H.; Singh, R.S.; Tumlin, T.; Teo, E.H.T.; Karna, S.P. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett. 2014, 14, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Liu, H.K.; Sun, X.; Yamauchi, Y.; Bando, Y.; Golberg, D.; Huang, Z. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 2017, 20, 611–628. [Google Scholar] [CrossRef]
- Ismach, A.; Chou, H.; Ferrer, D.A.; Wu, Y.; McDonnell, S.; Floresca, H.C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M.J.; et al. Toward the Controlled Synthesis of Hexagonal Boron Nitride Films. ACS Nano 2012, 6, 6378–6385. [Google Scholar] [CrossRef]
- Arya, S.P.S.; D’Amico, A. Preparation, properties and applications of boron nitride thin films. Thin Solid Films 1988, 157, 267–282. [Google Scholar] [CrossRef]
- Ferguson, J.; Weimer, A.; George, S. Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3. Thin Solid Films 2002, 413, 16–25. [Google Scholar] [CrossRef]
- Weber, M.; Koonkaew, B.; Balme, S.; Utke, I.; Picaud, F.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2017, 9, 16669–16678. [Google Scholar] [CrossRef]
- Kääriäinen, T.; Cameron, D.; Kääriäinen, M.-L.; Sherman, A. Atomic Layer Deposition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 9781118747407. [Google Scholar]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J.F.; Dresselhaus, M.; Palacios, T.; et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Han, C.; Wang, G.; Tang, B.; Tang, C.; Wang, Y.; Zou, W.; Chen, W.; Zhang, X.-A.; et al. Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition. Sci. Rep. 2015, 4, 4537. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Gao, J.; Nie, Y.; Gao, T.; Sun, J.; Ma, D.; Li, Q.; Chen, Y.; Jin, C.; Bachmatiuk, A.; et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, Q.; He, G.; Xu, K.; Jiang, L.; Hu, X.; Hu, J. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 2013, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Hao, W. ATOMIC Layer Deposition of Boron Nitride. Ph.D. Thesis, Université de Lyon, Lyon, France, 2017. [Google Scholar]
- Olander, J.; Ottosson, L.M.; Heszler, P.; Carlsson, J.-O.; Larsson, K.M.E. Laser-Assisted Atomic Layer Deposition of Boron Nitride Thin Films. Chem. Vap. Depos. 2005, 11, 330–337. [Google Scholar] [CrossRef]
- Mårlid, B.; Ottosson, M.; Pettersson, U.; Larsson, K.; Carlsson, J.-O. Atomic layer deposition of BN thin films. Thin Solid Film. 2002, 402, 167–171. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Xu, Z.; Mu, R.; He, L. Influence of BCl3/NH3 flow ratio on growth and microstructure of CVI-processed boron nitride interfacial coatings. Vacuum 2020, 179, 109484. [Google Scholar] [CrossRef]
- Carminati, P.; Buffeteau, T.; Daugey, N.; Chollon, G.; Rebillat, F.; Jacques, S. Low pressure chemical vapour deposition of BN: Relationship between gas phase chemistry and coating microstructure. Thin Solid Film. 2018, 664, 106–114. [Google Scholar] [CrossRef]
- Bjelkevig, C.; Mi, Z.; Xiao, J.; Dowben, P.A.; Wang, L.; Mei, W.-N.; Kelber, J.A. Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: Extrinsically doped graphene. J. Phys. Condens. Matter 2010, 22, 302002. [Google Scholar] [CrossRef]
- Driver, M.S.; Beatty, J.D.; Olanipekun, O.; Reid, K.; Rath, A.; Voyles, P.M.; Kelber, J.A. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001). Langmuir 2016, 32, 2601–2607. [Google Scholar] [CrossRef]
- Beatty, J.; Cao, Y.; Tanabe, I.; Sky Driver, M.; Dowben, P.A.; Kelber, J.A. Atomic layer-by-layer deposition of h-BN(0001) on cobalt: A building block for spintronics and graphene electronics. Mater. Res. Express 2014, 1, 046410. [Google Scholar] [CrossRef]
- Jones, J.; Beauclair, B.; Olanipekun, O.; Lightbourne, S.; Zhang, M.; Pollok, B.; Pilli, A.; Kelber, J. Atomic layer deposition of h-BN(0001) on RuO2 (110)/Ru(0001). J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 01B139. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, S.H.; Yun, S.J.; Kim, Y.I.; Boandoh, S.; Park, J.-H.; Shin, B.G.; Ko, H.; Lee, S.H.; Kim, Y.-M.; et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.A.; Chuu, C.P.; Tseng, C.C.; Wen, C.K.; Wong, H.S.P.; Pan, S.; Li, R.; Chao, T.A.; Chueh, W.C.; Zhang, Y.; et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.R.; Hong, S.; Hyun, C.; Yoon, S.I.; Kim, G.; Jeong, H.Y.; Shin, T.J.; Park, S.O.; Wong, K.; Kwak, S.K.; et al. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. Nano Lett. 2016, 16, 3360–3366. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Jang, A.R.; Jeong, H.Y.; Lee, Z.; Kang, D.J.; Shin, H.S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839. [Google Scholar] [CrossRef]
- Kim, S.M.; Hsu, A.; Park, M.H.; Chae, S.H.; Yun, S.J.; Lee, J.S.; Cho, D.H.; Fang, W.; Lee, C.; Palacios, T.; et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ravichandran, A.V.; Mohan, J.; Cheng, L.; Lucero, A.T.; Zhu, H.; Che, Z.; Catalano, M.; Kim, M.J.; Wallace, R.M.; et al. Atomic Layer Deposition of Layered Boron Nitride for Large-Area 2D Electronics. ACS Appl. Mater. Interfaces 2020, 12, 36688–36694. [Google Scholar] [CrossRef]
- Desrosiers, R.M.; Greve, D.W.; Gellman, A.J. Nucleation of boron nitride thin films on Ni(100). Surf. Sci. 1997, 382, 35–48. [Google Scholar] [CrossRef]
Precursors | Growth Method | Substrate | Growth Temperature | Properties of the Resulting Film | Ref. |
---|---|---|---|---|---|
BBr3, NH3 | Low-pressure, hot-wall ALD | Silica substrate | 400–750 °C | Turbostatic BN, very smooth (surface roughness of 0.3–0.5 nm) | [28] |
Laser-assisted ALD | 250–750 °C | Hydrogen-terminated turbostatic BN | [27] | ||
Hot-wall ALD | Silica, Si/SiNx, or Anodic aluminum oxide (AAO) | 750 °C | BN nanoporous membrane (turbostatic BN) | [20] | |
BCl3, NH3 | Chemical vapor infiltration (CVI) | SiC fiber fabric | Deposition at 843 °C Heat-treated at 1050 °C | Conformal BN coating with thickness ranging 545–745 nm, Excellent thermal stability | [29] |
ALD | ZrO2 particles | 226.85 °C (500 K) | Conformal a-BN coating with thickness of ≈25 Å | [19] | |
ALD using UHV chamber | Ru(0001) | 2-cycle deposition at 276.85 °C (550 K) UHV anneal at 726.85 °C (1000 K) | ) BN(111) monolayer on Ru(0001) | [31] | |
Atomic layer epitaxy (ALE) using UHV chamber | Co(0001) | 326.85 °C (600 K) | Multi-layer h-BN(0001) films (up to seven layers) | [32] | |
ALD using UHV chamber | Co(0001) | Deposition at 550 K Annealing at 700 K | Multi-layer h-BN films with azimuthal registry | [33] | |
ALD using UHV chamber | RuO2 on Ru(0001) | Deposition at 326.85 °C (600 K) Annealing at 526.85 °C (800 K) | Multi-layer epitaxial h-BN(0001) films | [34] | |
Hot-wall LPCVD | Si | 900–1400 °C | Micrometer-thick turbostatic BN films with mixture of poorly and highly organized domains | [30] | |
Cold-wall ALD | SiO2/Si | 600 °C | Ultra-smooth nanocrystalline layered-BN thin film | [41] | |
Sequential-pulsed CVD | Cu | 900–1000 °C | Polycrystalline h-BN layers | This work | |
B2H6, NH3 | LPCVD and sequential pulsed-CVD | Ni, Cu, or sapphire | 1025 °C | Thin (1–5 layers) and thick (~100 layers) polycrystalline h-BN film | [17] |
Low-pressure (<106 Torr) exposure | Ni | 676.85 °C (950 K) | Self-limited monolayer BN | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.; Yi, G.-C. Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil. Nanomaterials 2022, 12, 80. https://doi.org/10.3390/nano12010080
Oh H, Yi G-C. Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil. Nanomaterials. 2022; 12(1):80. https://doi.org/10.3390/nano12010080
Chicago/Turabian StyleOh, Hongseok, and Gyu-Chul Yi. 2022. "Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil" Nanomaterials 12, no. 1: 80. https://doi.org/10.3390/nano12010080
APA StyleOh, H., & Yi, G. -C. (2022). Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil. Nanomaterials, 12(1), 80. https://doi.org/10.3390/nano12010080