Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, J.Y.; Son, K.S.; Jung, J.S.; Kim, T.S.; Ryu, A.K.; Park, K.B.; Yoo, B.W.; Kim, J.W.; Lee, Y.G.; Park, K.C.; et al. Bottom-gate Gallium Indium Zinc Oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron. Device Lett. 2008, 29, 1309–1311. [Google Scholar] [CrossRef]
- Petti, L.; Munzenrieder, N.; Vogt, C.; Faber, H.; Buthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Troster, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Deng, S.; Li, G.; Zhong, W.; Chen, R.; Li, G.; Yeung, F.S.Y.; Wong, M.; Kwok, H.S. Low leakage current vertical thin-film transistors with InSnO-stabilized ZnO Channel. IEEE Electron. Device Lett. 2019, 41, 248–257. [Google Scholar] [CrossRef]
- Su, N.C.; Wang, S.J.; Huang, C.C.; Chen, Y.H.; Huang, H.Y.; Chiang, C.K.; Chin, A. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron. Device Lett. 2010, 31, 680–682. [Google Scholar]
- Nomura, K.; Kamiya, T.; Hosono, H. Ambipolar oxide thin-film transistor. Adv. Mater. 2011, 23, 3431–3434. [Google Scholar] [CrossRef]
- Chin, A.; Yen, T.J.; Shih, C.W.; Chen, Y.D. High mobility metal-oxide devices for display SoP and 3D brain-mimicking IC. Proc. Int. Disp. Workshops 2019, 26, 455–457. [Google Scholar] [CrossRef]
- Chin, A.; Chen, Y.D. Technologies toward three-dimensional brain-mimicking IC architecture. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 472–474. [Google Scholar]
- Chin, A.; Yen, T.J.; Chen, Y.D.; Shih, C.W.; Gritsenko, V. High Mobility Oxide Complementary TFTs for System-on-Display and Three-Dimensional Brain-Mimicking IC. In Proceedings of the International Conference on Display Technology, Wuhan, China, 11–13 October 2020; pp. 292–294. [Google Scholar]
- Felfel, A.M.; Datta, K.; Dutt, A.; Veluri, H.; Zaky, A.; Thean, A.V.Y.; Aly, M.M.S. Quantifying the benefits of monolithic 3D computing systems enabled by TFT and RRAM. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 43–48. [Google Scholar]
- Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.Y.; Cao, H.T.; Chen, X.B.; Liu, Z.M.; Zhuge, F.; Luo, H.; Li, J.; Lu, Y.C.; Lu, W. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl. Phys. Lett. 2012, 100, 263502. [Google Scholar] [CrossRef]
- Ohshima, H.; Morozumi, S. Future trends for TFT integrated circuits on glass substrates. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, Washington, DC, USA, 7–9 December 1989; pp. 157–160. [Google Scholar]
- Zhong, C.W.; Lin, H.C.; Liu, K.C.; Huang, T.Y. Improving electrical performances of p-type SnO thin-film transistors using double-gated structure. IEEE Electron Device Lett. 2015, 36, 1053–1055. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A.; Lu, C.F.; Yi, S.H. Extremely high mobility ultra-thin metal-oxide with ns2np2 configuration. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, Washington, DC, USA, 7–9 December 2015; pp. 145–148. [Google Scholar]
- Yen, T.J.; Chin, A.; Gritsenko, V. High performance top-gate thin film transistor with an ultra-thin channel layer. Nanomaterials 2020, 10, 2145. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep. 2016, 6, 19023. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.W.; Yen, T.J.; Chin, A.; Lu, C.F.; Su, W.F. Low-temperature processed tin oxide transistor with ultraviolet irradiation. IEEE Electron Device Lett. 2019, 40, 909–912. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A. New material transistor with record-high field-effect mobility among wide-band-gap semiconductors. ACS Appl. Mater. Interfaces 2016, 8, 19187–19191. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.W.; Chin, A. Remarkably High mobility thin-film transistor on flexible substrate by novel passivation material. Sci. Rep. 2017, 7, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high hole mobility metal-oxide thin-film transistors. Sci. Rep. 2018, 8, 889. [Google Scholar] [CrossRef] [Green Version]
- Yen, T.J.; Chin, A.; Gritsenko, V. Exceedingly high performance top-gate p-type SnO thin film transistor with a nanometer scale channel layer. Nanomaterials 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Pattanasattayavong, P.; Thomas, S.; Adamopoulos, G.; McLachlan, M.A.; Anthopoulos, T.D. P-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett. 2013, 102, 163505. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Li, X.; Jang, J. High performance p-type NiOX thin-film transistor by Sn doping. Appl. Phys. Lett. 2016, 108, 233503. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, H.; Yu, C.; Li, C.; Chen, S.; Huang, W.; Wang, J.; Wang, H. Poly-GeSn junctionless thin-film transistors on insulators fabricated at low temperatures via pulsed laser annealing. Phys. Status Solidi RRL 2019, 13, 1900420. [Google Scholar] [CrossRef]
- Galluccio, E.; Dohert, J.; Biswas, S.; Holmes, J.D.; Duffy, R. Field-effect transistor figures of merit for vapor–liquid–solid-grown Ge1−xSnx (x = 0.03–0.09) nanowire devices. ACS Appl. Electron. Mater. 2020, 2, 1226–1234. [Google Scholar] [CrossRef]
- Chou, C.P.; Lin, Y.X.; Wu, Y.H. Implementing p-Channel junctionless thin-film transistor on poly-Ge0.95Sn0.05 film formed by amorphous GeSn deposition and annealing. IEEE Electron Device Lett. 2018, 39, 1187–1190. [Google Scholar]
- Miyazaki, R.; Hara, A. Four-terminal polycrystalline Ge1−xSnx thin film transistors using copper-induced crystallization on glass substrates and their application to enhancement/depletion inverters. Jpn. J. Appl. Phys. 2020, 59, 051008. [Google Scholar] [CrossRef]
- Nakano, Y.; Saeki, S.; Morikawa, T. Optical bandgap widening of p-type Cu2O films by nitrogen doping. Appl. Phys. Lett. 2009, 94, 022111. [Google Scholar] [CrossRef] [Green Version]
- Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 2013, 4, 2292. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.; Wang, W.; Zhang, Z.; Pan, J.; Gong, X.; Liang, G.; Tok, E.S.; Yeo, Y.C. Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality. J. Appl. Phys. 2016, 119, 024502. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Chen, R.; Magyari-Kope, B.; Lin, H.; Yang, B.; Nainani, A.; Nishi, Y.; Harris, J.S.; Saraswat, K.C. GeSn technology: Extending the Ge electronics roadmap. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, Washington, DC, USA, 5–7 December 2011; pp. 398–401. [Google Scholar]
- Sau, J.D.; Cohen, M.L. Possibility of increased mobility in Ge-Sn alloy system. Phys. Rev. B 2007, 75, 045208. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef] [Green Version]
- Togo, A.; Tanaka, I. Spglib: A software library for crystal symmetry search. arXiv 2018, arXiv:1808.01590. [Google Scholar]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Sun, G.; Sun, Y.; Nishida, T.; Thompson, E.S. Hole mobility in silicon inversion layers: Stress and surface orientation. J. Appl. Phys. 2007, 102, 084501. [Google Scholar] [CrossRef]
- Yu, D.S.; Chin, A.; Laio, C.C.; Lee, C.F.; Cheng, C.F.; Chen, W.J.; Zhu, C.; Li, M.-F.; Yoo, W.J.; McAlister, S.P.; et al. 3D GOI CMOSFETs with novel IrO2(Hf) dual gates and high-κ dielectric on 1P6M-0.18 μm-CMOS. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, San Francisco, CA, USA, 13–15 December 2004; pp. 181–184. [Google Scholar]
- Cheng, C.F.; Wu, C.H.; Su, N.C.; Wang, S.J.; McAlister, S.P.; Chin, A. Very low Vt [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, Washington, DC, USA, 10–12 December 2007; pp. 333–336. [Google Scholar]
- Yu, X.; Zhu, C.; Yu, M.; Li, M.F.; Chin, A.; Tung, C.H.; Gui, D.; Kwong, D.L. Advanced MOSFETs using HfTaON/SiO2 gate dielectric and TaN metal gate with excellent performances for low standby power application. In Proceedings of the International Electron Devices Meeting (IEDM) Technical Digest, Washington, DC, USA, 5 December 2005. [Google Scholar] [CrossRef]
- Wang, W.; Lei, D.; Dong, Y.; Gong, X.; Tok, E.S.; Yeo, Y.C. Digital etch technique for forming ultra-scaled germanium-tin (Ge1−xSnx) fin structure. Sci. Rep. 2017, 7, 1835. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Fan, W.J.; Seo, J.H.; Cho, N.; Liu, S.C.; Geng, D.; Liu, Y.H.; Gong, S.Q.; Wang, X.D.; Zhou, W.D.; et al. Polycrystalline GeSn thin films on Si formed by alloy evaporation. Appl. Phys. Express 2015, 8, 061301. [Google Scholar] [CrossRef]
- Li, H.; Brouillet, J.; Salas, A.; Wang, X.; Liu, J. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics. Opt. Mater. Express 2013, 3, 1385–1396. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kim, C.H.; Im, H.S.; Myung, Y.; Kim, H.S.; Back, S.H.; Lim, Y.R.; Jung, C.S.; Jang, D.M.; Park, J.; et al. Germanium−Tin alloy nanocrystals for high-performance lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 11691–11695. [Google Scholar] [CrossRef]
- Mittal, J.; Lin, K.L. Crystal structure variations of Sn nanoparticles upon heating. J. Electron. Mater. 2018, 47, 2394–2401. [Google Scholar] [CrossRef]
- Van Zeghbroeck, B. Principles of Semiconductor Devices; Colarado University: Boulder, CO, USA, 2004; p. 34. [Google Scholar]
Reference | Material | ||||
---|---|---|---|---|---|
This work | Ge0.875Sn0.125 | 0.225 | 0.028 | 0.25 | -- |
52 work | Ge | 0.28 | 0.044 | -- | 0.66 |
52 | Si | 0.49 | 0.16 | -- | 1.12 |
Reference | Poly-GeSn Thickness (nm) | Highest Process Temperature (°C) | μFE (cm2/V·s) @VDS (V) | SS (V/Decade) | ION/IOFF |
---|---|---|---|---|---|
26 | 10 | 300 | 54 @ −0.5 | -- | 1.2 × 102 |
27 | -- (nanowire) | 440 | 14.54 @ −0.2 | 1.87 | 5.3 × 103 |
28 | 12 | 500 | 39.3 @ −0.05 | -- | 1.7 × 104 |
29 | 15 | 500 | 20 @ −0.05 | 1 | 1.1 × 104 |
This work | 9 | 350 | 103.8 @ −0.1 | 1.56 | 75 |
This work | 7 | 350 | 41.8 @ −0.1 | 0.31 | 8.9 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, T.J.; Chin, A.; Chan, W.K.; Chen, H.-Y.T.; Gritsenko, V. Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor. Nanomaterials 2022, 12, 261. https://doi.org/10.3390/nano12020261
Yen TJ, Chin A, Chan WK, Chen H-YT, Gritsenko V. Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor. Nanomaterials. 2022; 12(2):261. https://doi.org/10.3390/nano12020261
Chicago/Turabian StyleYen, Te Jui, Albert Chin, Weng Kent Chan, Hsin-Yi Tiffany Chen, and Vladimir Gritsenko. 2022. "Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor" Nanomaterials 12, no. 2: 261. https://doi.org/10.3390/nano12020261
APA StyleYen, T. J., Chin, A., Chan, W. K., Chen, H. -Y. T., & Gritsenko, V. (2022). Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor. Nanomaterials, 12(2), 261. https://doi.org/10.3390/nano12020261