Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.2.1. Synthesis of Cubic Cu2O (100) Nanocrystals
2.2.2. Synthesis of Spherical Cu2O(111)
2.3. Characterization
2.4. Photoelectrochemical Measurements
2.5. Photocatalytic Performance Test
2.6. Trapping Experiment of Active Species
3. Results and Discussion
3.1. Synthesis
- (1)
- CuSO4∙5H2O aqueous solutions CuSO4→Cu2+ + SO42− (light blue);
- (2)
- Adding NaOH aqueous solution in to (1) Cu2+ + 2OH−→Cu(OH)2↓ (dark blue);
- (3)
- Adding AA aqueous solution in to (2)
3.2. Crystal Structures Information
3.3. Morphology Measure and Discussion
3.4. Chemical Coordination Analysis
3.5. Optical Properties
3.6. Photocatalytic Performance Tests
3.7. Charge Transfer Dynamics and PEC Measurements
3.8. Trapping Experiment of Cative Species
3.9. Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.J.; Liu, G.; Moniz, S.J.A.; Bi, Y.; Beale, A.M.; Ye, J.; Tang, J. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808–7828. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Xie, Y. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R 2018, 130, 1–39. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Zhan, G.; Zhang, L. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 2017, 50, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Liu, D.; Zhang, N.; Ye, W.; Ju, H.; Shi, L.; Long, R.; Zhu, J.; Xiong, Y. Noble-metal-free janus-like structures by cation exchange for Z-scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem. Int. Ed. 2017, 56, 4206–4210. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Huang, H.; Zhao, Q.; Ma, T.; Wang, L. Thin-layered photocatalysts. Adv. Funct. Mater. 2020, 30, 1910005. [Google Scholar] [CrossRef]
- Sajan, C.P.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Cao, S. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Hsu, Y.-J. Au@Cu7S4 yolk@shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification. Nano Energy 2017, 31, 286–295. [Google Scholar] [CrossRef]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152. [Google Scholar] [CrossRef]
- Weng, B.; Qi, M.-Y.; Han, C.; Tang, Z.-R.; Xu, Y.-J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687. [Google Scholar] [CrossRef]
- Li, J.; Ji, X.; Li, X.; Hu, X.; Sun, Y.; Ma, J.; Qiao, G. Preparation and photocatalytic degradation performance of Ag3 PO4 with a two-step approach. Appl. Surf. Sci. 2016, 372, 30–35. [Google Scholar] [CrossRef]
- Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y. Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy 2019, 60, 576–582. [Google Scholar] [CrossRef]
- Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew. Chem. Int. Ed. 2013, 52, 5776–5779. [Google Scholar] [CrossRef]
- Shang, Y.; Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2015, 2, 1500140. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Kumar, S.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Coulson, B.; Douthwaite, R.E.; Jiang, Z.; Wilson, K.; Lee, A.F. Size-dependent visible light photocatalytic performance of Cu2O nanocubes. ChemCatChem 2018, 10, 3554–3563. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Deng, S.; Polavarapu, L.; Gao, N.; Yuan, P.; Sow, C.H.; Xu, Q.H. Plasmon-enhanced photocatalytic properties of Cu2O nanowire-Au nanoparticle assemblies. Langmuir 2012, 28, 12304–12310. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Huang, X.; Tan, Y. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 2011, 4, 448–459. [Google Scholar] [CrossRef]
- Zhou, T.; Zang, Z.; Wei, J.; Zheng, J.; Hao, J.; Ling, F.; Tang, X.; Fang, L.; Zhou, M. Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires. Nano Energy 2018, 50, 118–125. [Google Scholar] [CrossRef]
- Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225. [Google Scholar] [CrossRef]
- Kuo, C.H.; Chen, C.H.; Huang, M.H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780. [Google Scholar] [CrossRef]
- Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, R.; Xie, Y.M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.Q. Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, S.S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.X.; Huang, W. The most active Cu facet for low-temperature water gas shift reaction. Nat. Commun. 2017, 8, 488. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Gao, L.; Yang, S.; Sun, J. Facile synthesis and shape evolution of single-crystal cuprous oxide. Adv. Mater. 2009, 21, 2068–2071. [Google Scholar] [CrossRef]
- Yao, K.X.; Yin, X.M.; Wang, T.H.; Zeng, H.C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Mousavi, N.-a.; Amini, M.; Gautam, S.; Singh, J.P.; Chae, K.H. Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties. Chin. Chem. Lett. 2017, 28, 1125–1130. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.Y.; Luan, D.; Lou, X.W.D. Synthesis of CuS@CoS2 Double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem. Int. Ed. 2019, 58, 7739–7743. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M.H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2011, 134, 1261–1267. [Google Scholar] [CrossRef]
- Yang, H.C.; Cao, R.Y.; Sun, P.X.; Yin, J.M.; Zhang, S.W.; Xu, X.J. Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl. Catal. B 2019, 256, 117862. [Google Scholar] [CrossRef]
- Du, D.; Shi, W.; Wang, L.; Zhang, J. Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl. Catal. B 2017, 200, 484–492. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Tian, B.; Luo, Y.; Zhang, J. Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catal. Today 2017, 281, 181–188. [Google Scholar] [CrossRef]
- Jiang, E.; Song, N.; Zhang, X.; Yang, L.; Liu, C.; Dong, H. In-situ fabrication of Z-scheme Bi3O4Cl/Bi12O17Cl2 heterostructure by facile pH control strategy to boost removal of various pollutants in water. Chem. Eng. J. 2020, 388, 123483. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Chiu, C.-Y.; Huang, M.H. Fabrication of Diverse Cu2O Nanoframes through Face-Selective Etching. J. Phys. Chem. C 2013, 117, 24611–24617. [Google Scholar] [CrossRef]
- Chang, I.C.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Yang, M.-H.; Chiu, H.-T.; Lee, C.-Y. Large-scale synthesis of uniform Cu2O nanocubes with tunable sizes by in-situ nucleation. CrystEngComm 2013, 15, 2363–2366. [Google Scholar] [CrossRef]
- Induja, M.; Sivaprakash, K.; Karthikeyan, S. Facile green synthesis and antimicrobial performance of Cu2O nanospheres decorated g-C3N4 nanocomposite. Mater. Res. Bull. 2019, 112, 331–335. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Yu, Z.; Song, R.; Qian, K.; Chen, X.; Tian, J.; Zhang, W.; Huang, W. Site-Resolved Cu2O Catalysis in the oxidation of CO. Angew. Chem. Int. Ed. 2019, 58, 4276–4280. [Google Scholar] [CrossRef]
- Bao, H.Z.; Zhang, W.H.; Shang, D.L.; Hua, Q.; Ma, Y.S.; Jiang, Z.Q.; Yang, J.L.; Huang, W.X. Shape-dependent reducibility of cuprous oxide nanocrystals. J. Phys. Chem. C 2010, 114, 6676–6680. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.; Wu, Y.; Zhou, C.; Li, L.; Liu, Z.; Dong, J.; Zhou, K. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings. Appl. Surf. Sci. 2019, 465, 279–287. [Google Scholar] [CrossRef]
- Sari, F.N.I.; Lin, C.; Ting, J.-M. Synthesis and characterizations of Cu2O/Ni(OH)2 nanocomposite having a double co-catalyst for photoelectrochemical hydrogen production. Chem. Eng. J. 2019, 368, 784–794. [Google Scholar] [CrossRef]
- Akgul, F.A.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Wu, Y.; Wang, D.; Peng, Q.; Zhou, G.; Li, Y. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst. Angew. Chem. Int. Ed. 2013, 52, 11049–11053. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Wang, Q.; Zeng, H.C. Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chemistry 2012, 18, 14605–14609. [Google Scholar] [CrossRef] [PubMed]
- Toe, C.Y.; Zheng, Z.; Wu, H.; Scott, J.; Amal, R.; Ng, Y.H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem. Int. Ed. 2018, 57, 13613–13617. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Wen, L.; Wang, Z.; Cao, D.; Xu, R.; Fang, Y.; Zhou, Y.; Lei, Y. Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visiblelight photocatalyst. Nano Energy 2016, 30, 109–117. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Chisholm, M.F.; Zhong, J.; Chen, C.; Cao, X.; Dong, F.; Chi, Z.; Chen, H.; Weng, Y.X.; et al. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, e1807576. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Qiao, L.L.; Zhu, A.Q.; Liu, Y.; Pan, J. Constructing 2D BiOCl/g-C3N4 layered composite with large contact surface for visible-light-driven photocatalytic degradation. Appl. Surf. Sci. 2017, 426, 897–905. [Google Scholar] [CrossRef]
- Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Wang, Y.; Fu, X. One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Appl. Catal. B 2020, 266, 118617. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Yan, J.; Huang, J.; Song, Y.; Deng, J.; Wu, J.; Ding, C.; Wu, X.; Yuan, S.; et al. Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS2 atomic layer nanosheet modified mesoporous graphitic carbon nitride. J. Matter. Chem. A 2019, 7, 18906–18914. [Google Scholar] [CrossRef]
- Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P.K.; Ye, L. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J. Matter. Chem. A 2019, 7, 9726–9735. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Ma, B.; Yang, T.; Gu, X.; Wang, X.; Zhang, J.; Hua, C. Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst. Nano Energy 2017, 38, 271–280. [Google Scholar] [CrossRef]
- Xiao, R.; Zhao, C.X.; Zou, Z.Y.; Chen, Z.P.; Tian, L.; Xu, H.T.; Tang, H.; Liu, Q.Q.; Lin, Z.X.; Yang, X.F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B 2020, 268, 118382. [Google Scholar] [CrossRef]
- Ji, M.; Xia, J.; Di, J.; Liu, Y.; Chen, R.; Chen, Z.; Yin, S.; Li, H. Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of Bi4O5I2 towards bisphenol a removal. Chem. Eng. J. 2018, 331, 355–363. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.X.; Chen, X.L.; Ji, M.X.; Yin, S.; Zhang, Q.; Li, H.M. Tunable oxygen activation induced by oxygen defects in ni-trogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon 2017, 114, 601–607. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, G.; Meng, Y.; Yang, C.; Ni, Z.; Hu, J. Kinetic and mechanistic analysis for the photodegradation of gaseous formaldehyde by core-shell CeO2@LDHs. Appl. Catal. B 2020, 278, 11926. [Google Scholar] [CrossRef]
- Su, G.; Feng, T.; Huang, Z.; Zheng, Y.; Zhang, W.; Liu, G.; Wang, W.; Wei, H.; Dang, L. MOF derived hollow CuO/ZnO nanocages for the efficient and rapid degradation of fluoroquinolones under natural sunlight. Chem. Eng. J. 2022, 436, 135119. [Google Scholar]
- Tian, Y.; Jia, N.; Ma, H.; Liu, G.; Xiao, Z.; Wu, Y.; Zhou, L.; Lei, J.; Wang, L.; Liu, Y.; et al. 0D/3D coupling of g-C3N4 QDs/hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes. J. Hazard. Mater. 2021, 419, 126359. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, M.; Yan, J.; Liu, J.; Zhang, J.; Ma, J. Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange. Nanomaterials 2022, 12, 1697. https://doi.org/10.3390/nano12101697
Li J, He M, Yan J, Liu J, Zhang J, Ma J. Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange. Nanomaterials. 2022; 12(10):1697. https://doi.org/10.3390/nano12101697
Chicago/Turabian StyleLi, Jiwen, Meizi He, Jiankun Yan, Jiahui Liu, Jiaxin Zhang, and Jingjun Ma. 2022. "Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange" Nanomaterials 12, no. 10: 1697. https://doi.org/10.3390/nano12101697
APA StyleLi, J., He, M., Yan, J., Liu, J., Zhang, J., & Ma, J. (2022). Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange. Nanomaterials, 12(10), 1697. https://doi.org/10.3390/nano12101697