Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials
Abstract
:1. Introduction
2. Simulation Method and Scattering Mechanisms
3. Results and Discussion
3.1. Analysis of Bulk Materials
3.2. Evaluation of the Scaling Effect
3.3. Evaluation of BPR Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edelstein, D.; Heidenreich, J.; Goldblatt, R.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Motsiff, W.; Simon, A. Full Copper Wiring in a Sub-0.25/Spl Mu/m CMOS ULSI Technology. In Proceedings of the International Electron Devices Meeting, IEDM Technical Digest, Washington, DC, USA, 7–10 December 1997. [Google Scholar]
- Kapur, P.; McVittie, J.P.; Saraswat, K.C. Technology and Reliability Constrained Future Copper Interconnects. I. Resistance Modeling. IEEE Trans. Electron Devices 2002, 49, 590–597. [Google Scholar] [CrossRef]
- Koike, J.; Haneda, M.; Iijima, J.; Wada, M. Cu alloy metallization for self-forming barrier process. In Proceedings of the International Interconnect Technology Conference, Burlingame, CA, USA, 5–7 June 2006. [Google Scholar]
- Ogawa, E.T.; Lee, K.D.; Blaschke, V.A.; Ho, P.S. Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans. Reliab. 2002, 51, 403–419. [Google Scholar] [CrossRef]
- Hau-Riege, C.S.; Thompson, C.V. Electromigration in Cu Interconnects with Very Different Grain Structures. Appl. Phys. Lett. 2001, 78, 3451–3453. [Google Scholar] [CrossRef]
- He, M.; Zhang, X.; Nogami, T.; Lin, X.; Kelly, J.; Kim, H.; Spooner, T.; Edelstein, D.; Zhao, L. Mechanism of Co Liner as Enhancement Layer for Cu Interconnect Gap-Fill. J. Electrochem. Soc. 2013, 160, D3040. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Gardner, D. Influence of Line Dimensions on the Resistance of Cu Interconnections. IEEE Electron Device Lett. 1998, 19, 508–510. [Google Scholar] [CrossRef]
- Gupta, A.; Kundu, S.; Teugels, L.; Bommels, J.; Adelmann, C.; Heylen, N.; Jamieson, G.; Pedreira, O.V.; Ciofi, I.; Chava, B.; et al. High-Aspect-Ratio Ruthenium Lines for Buried Power Rail. In Proceedings of the 2018 IEEE International Interconnect Technology Conference, Santa Clara, CA, USA, 4–7 June 2018. [Google Scholar]
- Ryckaert, J.; Gupta, A.; Jourdain, A.; Chava, B.; Vsan der Plas, G.; Verkest, D.; Beyne, E. Extending the Roadmap beyond 3 nm through System Scaling Boosters: A Case Study on Buried Power Rail and Backside Power Delivery. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference, Singapore, 12–15 March 2019. [Google Scholar]
- Gupta, A.; Pedreira, O.V.; Arutchelvan, G.; Zahedmanesh, H.; Devriendt, K.; Mertens, H.; Tao, Z.; Ritzenthaler, R.; Wang, S.; Radisic, D.; et al. Buried Power Rail Integration with FinFETs for Ultimate CMOS Scaling. IEEE Trans. Electron Devices 2020, 67, 5349–5354. [Google Scholar] [CrossRef]
- Tu, K.-N. Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects. J. Appl. Phys. 2003, 94, 5451–5473. [Google Scholar] [CrossRef]
- Lu, K. Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures. Nat. Rev. Mater. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Adelmann, C.; Wen, L.G.; Peter, A.P.; Siew, Y.K.; Croes, K.; Swerts, J.; Popovici, M.; Sankaran, K.; Pourtois, G.; Van Elshocht, S. Alternative Metals for Advanced Interconnects. In Proceedings of the IEEE International Interconnect Technology Conference, San Jose, CA, USA, 20–23 May 2014. [Google Scholar]
- Auth, C.; Aliyarukunju, A.; Asoro, M.; Bergstrom, D.; Bhagwat, V.; Birdsall, J.; Bisnik, N.; Buehler, M.; Chikarmane, V.; Ding, G. A 10 nm High Performance and Low-Power CMOS Technology Featuring 3 Rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Interconnects. In Proceedings of the 2017 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Dutta, S.; Sankaran, K.; Moors, K.; Pourtois, G.; Van Elshocht, S.; Bömmels, J.; Vandervorst, W.; Tőkei, Z.; Adelmann, C. Thickness Dependence of the Resistivity of Platinum-Group Metal Thin Films. J. Appl. Phys. 2017, 122, 025107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Huang, H.; Patlolla, R.; Wang, W.; Mont, F.W.; Li, J.; Hu, C.-K.; Liniger, E.G.; McLaughlin, P.S.; Labelle, C. Ruthenium Interconnect Resistivity and Reliability at 48 Nm Pitch. In Proceedings of the 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 23–26 May 2016. [Google Scholar]
- Huynh-Bao, T.; Ryckaert, J.; Tokei, Z.; Mercha, A.; Verkest, D.; Thean, A.V.-Y.; Wambacq, P. Statistical Timing Analysis Considering Device and Interconnect Variability for BEOL Requirements in the 5-Nm Node and Beyond. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1669–1680. [Google Scholar] [CrossRef]
- Choi, D.; Barmak, K. On the Potential of Tungsten as Next-Generation Semiconductor Interconnects. Electron. Mater. Lett. 2017, 13, 449–456. [Google Scholar] [CrossRef]
- Gunst, T.; Markussen, T.; Stokbro, K.; Brandbyge, M. First-Principles Method for Electron-Phonon Coupling and Electron Mobility: Applications to Two-Dimensional Materials. Phys. Rev. B 2016, 93, 035414. [Google Scholar] [CrossRef] [Green Version]
- Philip, T.M.; Lanzillo, N.A.; Gunst, T.; Markussen, T.; Cobb, J.; Aboud, S.; Robison, R.R. First-Principles Evaluation of Fcc Ruthenium for Its Use in Advanced Interconnects. Phys. Rev. Appl. 2020, 13, 044045. [Google Scholar] [CrossRef]
- Gall, D.; Jog, A.; Zhou, T. Narrow Interconnects: The Most Conductive Metals. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), Online, 12–16 December 2020. [Google Scholar]
- Gall, D. The Search for the Most Conductive Metal for Narrow Interconnect Lines. J. Appl. Phys. 2020, 127, 050901. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, K. The Conductivity of Thin Metallic Films According to the Electron Theory of Metals. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1938; pp. 100–108. [Google Scholar]
- Sondheimer, E.H. The Mean Free Path of Electrons in Metals. Adv. Phys. 2001, 50, 499–537. [Google Scholar] [CrossRef]
- Mayadas, A.F.; Shatzkes, M. Electrical-Resistivity Model for Polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces. Phys. Rev. B 1970, 1, 1382. [Google Scholar] [CrossRef]
- Mayadas, A.F.; Shatzkes, M.; Janak, J.F. Electrical Resistivity Model for Polycrystalline Films: The Case of Specular Reflection at External Surfaces. Appl. Phys. Lett. 1969, 14, 345–347. [Google Scholar] [CrossRef]
- Moors, K.; Sorée, B.; Tőkei, Z.; Magnus, W. Resistivity Scaling and Electron Relaxation Times in Metallic Nanowires. J. Appl. Phys. 2014, 116, 063714. [Google Scholar] [CrossRef] [Green Version]
- Moors, K.; Sorée, B.; Magnus, W. Resistivity Scaling in Metallic Thin Films and Nanowires Due to Grain Boundary and Surface Roughness Scattering. Microelectron. Eng. 2017, 167, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.Z.; Gang, D.; Feng, K.J.; Yan, L.X.; Ruqi, H. Monte Carlo Simulation of Cu-Resistivity. In Proceedings of the 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, Japan, 9–11 September 2008. [Google Scholar]
- Liu, X.; Wei, K.; Yin, L.; Du, G.; Jiang, H.; Zhao, K.; Zeng, L.; Zhang, X. Three Dimemsional Electro-Thermal Coupled Monte Carlo Device Simulation. In Proceedings of the 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 28–31 October 2014. [Google Scholar]
- Jin, S.; Hong, S.-M.; Jungemann, C. An Efficient Approach to Include Full-Band Effects in Deterministic Boltzmann Equation Solver Based on High-Order Spherical Harmonics Expansion. IEEE Trans. Electron Devices 2011, 58, 1287–1294. [Google Scholar] [CrossRef]
- Zhao, K.; Hong, S.-M.; Jungemann, C.; Han, R.-Q. Stable Implementation of a Deterministic Multi-Subband Boltzmann Solver for Silicon Double-Gate NMOSFETs. In Proceedings of the 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Bologna, Italy, 6–8 September 2010. [Google Scholar]
- Di, S.; Zhao, K.; Lu, T.; Du, G.; Liu, X. Investigation of Transient Responses of Nanoscale Transistors by Deterministic Solution of the Time-Dependent BTE. J. Comput. Electron. 2016, 15, 770–777. [Google Scholar] [CrossRef]
- Jacoboni, C.; Reggiani, L. The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Rev. Mod. Phys. 1983, 55, 645–705. [Google Scholar] [CrossRef]
- Jungemann, C.; Meinerzhagen, B. Hierarchical Device Simulation: The Monte-Carlo Perspective; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Shikin, A.M.; Adamchuk, V.K. Quantum Confinement Effects in Thin Metal Layers on the Surface of Single Crystals and Their Analysis. Phys. Solid State 2008, 50, 1170–1185. [Google Scholar] [CrossRef]
- Burdick, G.A. Energy Band Structure of Copper. Phys. Rev. 1963, 129, 138–150. [Google Scholar] [CrossRef]
- Bagayoko, D.; Ziegler, A.; Callaway, J. Band Structure of Bcc Cobalt. Phys. Rev. B 1983, 27, 7046–7049. [Google Scholar] [CrossRef]
- Jepsen, O.; Andersen, O.K.; Mackintosh, A.R. Electronic Structure of Hcp Transition Metals. Phys. Rev. B 1975, 12, 3084–3103. [Google Scholar] [CrossRef] [Green Version]
- Mattheiss, L.F. Fermi Surface in Tungsten. Phys. Rev. 1965, 139, A1893–A1904. [Google Scholar] [CrossRef]
- Lugli, P.; Ferry, D.K. Effect of Electron-Electron Scattering on Monte Carlo Studies of Transport in Submicron Semiconductors Devices. Physica B+C 1983, 117, 251–253. [Google Scholar] [CrossRef]
- Yamakawa, S.; Ueno, H.; Taniguchi, K.; Hamaguchi, C.; Miyatsuji, K.; Masaki, K.; Ravaioli, U. Study of Interface Roughness Dependence of Electron Mobility in Si Inversion Layers Using the Monte Carlo Method. J. Appl. Phys. 1996, 79, 911–916. [Google Scholar] [CrossRef]
- Kim, C.-U.; Park, J.; Michael, N.; Gillespie, P.; Augur, R. Study of Electron-Scattering Mechanism in Nanoscale Cu Interconnects. J. Electron. Mater. 2003, 32, 982–987. [Google Scholar] [CrossRef]
- Simões, S.; Calinas, R.; Vieira, M.T.; Vieira, M.F.; Ferreira, P.J. In Situ TEM Study of Grain Growth in Nanocrystalline Copper Thin Films. Nanotechnology 2010, 21, 145701. [Google Scholar] [CrossRef] [Green Version]
- Gall, D. Electron Mean Free Path in Elemental Metals. J. Appl. Phys. 2016, 119, 085101. [Google Scholar] [CrossRef] [Green Version]
- Moore, M. International Roadmap for Devices and Systems (IRDSTM) Edition 2020. Available online: https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf (accessed on 23 July 2020).
- Clarke, J.S.; George, C.; Jezewski, C.; Caro, A.M.; Michalak, D.; Torres, J. Process Technology Scaling in an Increasingly Interconnect Dominated World. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology), Honolulu, HI, USA, 9–12 June 2014. [Google Scholar]
- Lanzillo, N.A.; Yang, C.-C.; Motoyama, K.; Huang, H.; Cheng, K.; Maniscalco, J.; Van Der Straten, O.; Penny, C.; Standaert, T.; Choi, K. Exploring the Limits of Cobalt Liner Thickness in Advanced Copper Interconnects. IEEE Electron Device Lett. 2019, 40, 1804–1807. [Google Scholar] [CrossRef]
- Bekiaris, N.; Wu, Z.; Ren, H.; Naik, M.; Park, J.H.; Lee, M.; Ha, T.H.; Hou, W.; Bakke, J.R.; Gage, M.; et al. Cobalt Fill for Advanced Interconnects. In Proceedings of the 2017 IEEE International Interconnect Technology Conference (IITC), HsinChu, Taiwan, 16–18 May 2017. [Google Scholar]
- Wen, L.G.; Adelmann, C.; Pedreira, O.V.; Dutta, S.; Popovici, M.; Briggs, B.; Heylen, N.; Vanstreels, K.; Wilson, C.J.; Van Elshocht, S.; et al. Ruthenium Metallization for Advanced Interconnects. In Proceedings of the 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 23–26 May 2016. [Google Scholar]
- Bakke, J.; Lei, Y.; Xu, Y.; Daito, K.; Fu, X.; Jian, G.; Wu, K.; Hung, R.; Jakkaraju, R.; Breil, N. Fluorine-Free Tungsten Films as Low Resistance Liners for Tungsten Fill Applications. In Proceedings of the 2016 IEEE International Interconnect Technology Coference/Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 23–26 May 2016. [Google Scholar]
- Timalsina, Y.P.; Horning, A.; Spivey, R.F.; Lewis, K.M.; Kuan, T.-S.; Wang, G.-C.; Lu, T.-M. Effects of Nanoscale Surface Roughness on the Resistivity of Ultrathin Epitaxial Copper Films. Nanotechnology 2015, 26, 075704. [Google Scholar] [CrossRef]
- Zheng, P.; Zhou, T.; Gall, D. Electron Channeling in TiO2 Coated Cu Layers. Semicond. Sci. Technol. 2016, 31, 055005. [Google Scholar] [CrossRef] [Green Version]
- Chawla, J.S.; Gstrein, F.; O’Brien, K.P.; Clarke, J.S.; Gall, D. Electron Scattering at Surfaces and Grain Boundaries in Cu Thin Films and Wires. Phys. Rev. B 2011, 84, 235423. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, E.; Kerdsongpanya, S.; Zangiabadi, A.; Barmak, K.; Coffey, K.R.; Gall, D. Resistivity Size Effect in Epitaxial Ru(0001) Layers. J. Appl. Phys. 2018, 124, 165105. [Google Scholar] [CrossRef]
- Milosevic, E.; Kerdsongpanya, S.; Gall, D. The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers. In Proceedings of the 2018 IEEE Nanotechnology Symposium (ANTS), Albany, NY, USA, 14–15 November 2018. [Google Scholar]
- Milosevic, E.; Kerdsongpanya, S.; McGahay, M.E.; Zangiabadi, A.; Barmak, K.; Gall, D. Resistivity Scaling and Electron Surface Scattering in Epitaxial Co(0001) Layers. J. Appl. Phys. 2019, 125, 245105. [Google Scholar] [CrossRef]
- Zheng, P.; Gall, D. The Anisotropic Size Effect of the Electrical Resistivity of Metal Thin Films: Tungsten. J. Appl. Phys. 2017, 122, 135301. [Google Scholar] [CrossRef]
Material | Simulation (μΩ·cm) | Experiment (μΩ·cm) |
---|---|---|
Cu | 1.676 | 1.678 |
W | 5.168 | 5.28 |
Co | 6.145 | 6.2 |
Ru | 7.71 | 7.8 |
Width (nm) | 10 | 12 | 16 | 20 | 24 | 26 | 36 | 40 | 48 |
Average GS (nm) | 9.5 | 11.5 | 15 | 19 | 24 | 26 | 36 | 40 | 48 |
Width (nm) | Grain Size (nm) | ||||||
---|---|---|---|---|---|---|---|
CuGS1 | CuGS2 | RuGS1 | RuGS2 | CoGS1 | CoGS2 | WGS1 | |
10 | 8.7 | 8.3 | 9.1 | 10 | 8.7 | 8.8 | |
12 | 10.3 | 12 | 10.5 | ||||
16 | 14.1 | 15.6 | 14.5 | ||||
20 | 17.9 | 18.6 | 18.5 | 19.7 | 18.8 | ||
24 | 22 | 19 | |||||
26 | 24 | 25 | 23 | 25.1 | |||
36 | 35 | ||||||
40 | 38 | 37 | 37.5 | 40 | 35 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Hu, Y.; Du, G.; Zhao, Y.; Dong, J. Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials. Nanomaterials 2022, 12, 1760. https://doi.org/10.3390/nano12101760
Zhao K, Hu Y, Du G, Zhao Y, Dong J. Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials. Nanomaterials. 2022; 12(10):1760. https://doi.org/10.3390/nano12101760
Chicago/Turabian StyleZhao, Kai, Yuanzhao Hu, Gang Du, Yudi Zhao, and Junchen Dong. 2022. "Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials" Nanomaterials 12, no. 10: 1760. https://doi.org/10.3390/nano12101760
APA StyleZhao, K., Hu, Y., Du, G., Zhao, Y., & Dong, J. (2022). Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials. Nanomaterials, 12(10), 1760. https://doi.org/10.3390/nano12101760