Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Upconverted Nanomaterials
2.3. Water-Soluble Upconverted Nanomaterials
2.4. Preparation of Carboxylated Proteins
2.5. Carboxylated Protein-Modified Upconverted Nanoparticles
2.6. DNA Probes Linked to Carboxylated Protein-Modified Upconverting Nanoparticles
3. Experimental Results and Discussion
3.1. The Effect of Yb3+ Doping Concentration on the Luminescence of Upconverted Nanomaterials
3.2. The Effect of Rare-Earth Ion Doping Concentration on the Luminescence of Upconverted Nanomaterials
3.2.1. Effect of Yb3+ Doping Concentration on Upconverted Nanomaterials
3.2.2. The Effect of Tm3+ Doping Concentration on Upconverted Nanomaterials
3.2.3. Comparison of Luminescence Properties of Two Upconverted Nanomaterials with the Best Doping Ratio
3.3. Analysis of Fluorescence Characteristics Based on NaYF4:Yb3+, Tm3+ Biological Probes
3.4. Fluorescent Probes for the Detection of Different Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Y.; Huang, Z.; Lin, Y.; Fang, Y.; Xu, Z. MiRNA expression patterns are associated with tumor mutational burden in lung adenocarcinoma. OncoImmunology 2019, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Danese, E.; Minicozzi, A.M.; Benati, M.; Paviati, E.; Lima-Oliveira, G.; Gusella, M.; Pasini, F.; Salvagno, G.L.; Montagnana, M.; Lippi, G. Reference miRNAs for colorectal cancer: Analysis and verification of current data. Sci. Rep. 2017, 7, 8413. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhou, S.; Yu, Z.; Chen, J.; Yang, G.; Tang, J. Decomposable quantum-dots/DNA nanosphere for rapid and ultrasensitive detection of extracellular respiring bacteria. Biosens. Bioelectron. 2017, 100, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, P.; Sarasquete, M.E.; Misiewicz-Krzeminska, I.; Corral, R.; Corchete, L.A.; Martín, A.A.; García-Sanz, R.; San Miguel, J.F.; Gutiérrez, N.C. Insights into epigenetic regulation of microRNA-155 expression in multiple myeloma. Biochim. Biophys. Acta—Gene Regul. Mech. 2015, 1849, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Yébenes, V.G.D.; Bartolomé-Izquierdo, N.; Ramiro, A.R. Regulation of B-cell development and function by micrornas. Immunol. Rev. 2013, 253, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Spierings, D.C.; McGoldrick, D.; Hamilton-Easton, A.M.; Neale, G.; Murchison, E.P.; Hannon, G.J.; Green, D.R.; Withoff, S. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood 2011, 117, 5340–5349. [Google Scholar] [CrossRef] [Green Version]
- Sacco, A.; Zhang, Y.; Maiso, P.; Manier, S.; Rossi, G.; Treon, S.P.; Ghobrial, I.M.; Roccaro, A.M. MicroRNA aberrations in waldenstrom macroglobulinemia. Clin. Lymphoma Myeloma Leuk. 2013, 13, 205–207. [Google Scholar] [CrossRef]
- Auzel, F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. C. R. Acad. Sci. Paris 1966, 262, 1016–1019. [Google Scholar]
- Zhan, Q.; Qian, J.; Liang, H.; Zhan, Q.; Somesfalean, G.; Andersson-Engels, S. Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation. Acs Nano 2011, 5, 3744–3757. [Google Scholar] [CrossRef]
- Chen, W. Manganese Doped Upconversion Luminescence Nanoparticles. U.S. Patent 7,008,559 B2, 29 June 2006. [Google Scholar]
- Joly, A.G.; Chen, W.; McCready, D.E.; Malm, J.-O.; Bovin, J.-O. Upconversion luminescence of CdTe nanoparticles. Phys. Rev. B 2005, 71, 165304. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J.; Ripmeester, J.A.; Wu, X.; Kingston, D.; Yu, K.; Joly, A.G.; Chen, W. Upconversion Luminescence of Colloidal CdS and ZnCdS Semiconductor Quantum Dots. J. Phys. Chem. C 2007, 111, 16261–16266. [Google Scholar] [CrossRef]
- Morgan, N.Y.; English, S.W.; Chen, W.; Chernomordik, V.; Russo, A.; Smith, P.D.; Gandjbakhche, A. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad. Radiol. 2005, 12, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Huang, Y. Luminescence Enhancement of EuS Clusters in USY-Zeolite. Appl. Phys. Lett. 2000, 76, 2328–2330. [Google Scholar] [CrossRef]
- Li, L.; Rashidi, L.H.; Yao, M.; Ma, L.; Chen, L.; Zhang, J.; Zhang, Y.; Chen, W. CuS Nanoagents for Photodynamic and Photothermal Therapies: Phenomena and Possible Mechanisms, Photodiagnosis and Photodynamic Therapy. Photodign. Photody Ther. 2017, 19, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W. In vitro Photothermal Ablation of Tumor Cells with CuS nanoparticles. Nanomedicine 2010, 5, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998–8003. [Google Scholar] [CrossRef] [Green Version]
- Dacosta, M.V.; Doughan, S.; Han, Y.; Krull, U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33. [Google Scholar] [CrossRef]
- Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. [Google Scholar] [CrossRef]
- Liu, F.; Chen, W.; Wang, S.P.; Joly, A.G. Investigation of Water-Soluble X-ray Luminescence Nanoparticles For Photodynamic Activation. Appl. Phys. Lett. 2008, 92, 43901. [Google Scholar] [CrossRef]
- Liu, Y.F.; Chen, W.; Wang, S.P.; Joly, A.G.; Westcott, S.; Woo, B.K. X-ray Luminescence of LaF3:Tb and LaF3:Ce, Tb Water Soluble. Nanoparticles J. Appl. Phys. 2008, 103, 63105. [Google Scholar] [CrossRef]
- Chen, W.; Westcott, S.L.; Zhang, J. Dose Dependence of X-ray Luminescence from CaF2:Eu2+, Mn2+ Phosphors. Appl. Phys. Lett. 2007, 91, 211103. [Google Scholar] [CrossRef]
- Chen, W.; Westcott, S.L.; Wang, S.; Liu, Y. Dose Dependent X-Ray Luminescence in MgF2:Eu2+, Mn2+ Phosphors. J. Appl. Phys. 2008, 103, 113103. [Google Scholar] [CrossRef]
- Wang, S.P.; Westcott, S.; Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 2002, 106, 11203–11209. [Google Scholar] [CrossRef]
- Chen, W.; Joly, A.G.; Zhang, J.Z. Up-Conversion Luminescence of Mn2+ in ZnS:Mn Nanoparticles. Phys. Rev. B. 2001, 64, 412021–412024. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Li, Y.; Pandey, N.K.; Chen, T.; Wang, L.; Amador, E.H.; Chen, W.; Liu, F.; Xiao, E.; et al. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioactive Materials 2021, 7, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zheng, P.; Liu, Q. Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials 2021, 11, 2474. [Google Scholar] [CrossRef]
- Long, M.; Liu, Q.; Wang, D.; Wang, J.; Zhang, Y.; Tang, A.; Liu, N.; Buid, B.; Chen, W.; Yang, H. A New nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue. Mater. Today Adv. 2021, 12, 100190. [Google Scholar] [CrossRef]
- Pandey, N.K.; Xiong, W.; Wang, L.; Chen, W.; Lumata, L. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater. 2021, 7, 112–125. [Google Scholar] [CrossRef]
- Wang, Y.; Alkhaldi, N.D.; Pandey, N.K.; Chudal, L.; Wang, L.Y.; Lin, L.W.; Zhang, M.B.; Yong, Y.X.; Amador, E.H.; Huda, M.N.; et al. A new type of cuprous-cysteamine sensitizers: Synthesis, optical properties and potential applications. Mater. Today Phys. 2021, 19, 100435. [Google Scholar] [CrossRef]
- Mao, L.; Lu, Z.; He, N.; Zhang, L.; Deng, Y.; Duan, D. A new method for improving the accuracy of miRNA detection with NaYF4:Yb,Er upconversion nanoparticles. Sci. China Chem. 2017, 60, 157–162. [Google Scholar] [CrossRef]
- Kowalik, P.; Kaminska, I.; Fronc, K.; Borodziuk, A.; Sikora, B. The ROS-generating photosensitizer-free NaYF4:Yb,Tm@SiO2 upconverting nanoparticles for photodynamic therapy application. Nanotechnology 2021, 32, 475101. [Google Scholar] [CrossRef] [PubMed]
- Etchart, I.M.; Bérard Laroche, M. Efficient white light emission by upconversion in Yb -, Er- and Tm -doped Y BaZnO. Chem. Commun. 2011, 47, 6263–6265. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, Z.; Zhao, D.; Zhang, D.; Qin, G.; Qin, W. Infrared to ultraviolet upconversion fluorescence of Gd3+ in β-NaYF4 microcrystals induced by 1560 nm excitation. Opt. Mater. 2011, 33, 783–787. [Google Scholar] [CrossRef]
- Shan, J.; Kong, W.; Wei, R.; Nan, Y.; Ju, Y. An investigation of the thermal sensitivity and stability of the β-NaYF4:Yb,Er upconversion nanophosphors. J. Appl. Phys. 2010, 107, 937. [Google Scholar] [CrossRef] [Green Version]
- SchäFer, H.; Ptacek, P.; Voss, B.; Eickmeier, H.; Haase, M. Synthesis and Characterization of Upconversion Fluorescent Yb3+, Er3+ Doped RbY2F7 Nano and Microcrystals. Cryst. Growth Des. 2010, 10, 2202–2208. [Google Scholar] [CrossRef]
- Li, C.X.; Quan, Z.W.; Yang, J.; Yang, P.P.; Lin, J. Highly uniform and monodisperse beta-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties. Inorg. Chem. 2007, 46, 6329. [Google Scholar] [CrossRef]
- Sch Fer, H.; Ptacek, P.; Zerzouf, O.; Haase, M. Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv. Funct. Mater. 2010, 18, 2913–2918. [Google Scholar] [CrossRef]
- Zhang, F. Photon Upconversion Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Chien, H.W.; Tsai, M.T.; Yang, C.H.; Lee, R.H.; Wang, T.L. Interaction of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ upconversion nanoparticles, molecularly imprinted polymers, and templates. RSC Adv. 2020, 10, 35600–35610. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.L.; Zheng, H.R.; Yu, Y.; Lei, Y.; Zhang, X.S. Spectroscopic properties of Tm3+ and Ln3+ (Ln3+ = Yb3+, Er3+, Pr3+, Ho3+, Eu3+) co-doped fluoride nanocrystals. Scientia Sinica (Phys. Mech. Astron.) 2010, 40, 287–295. [Google Scholar]
- Yun, R.; Luo, L.; He, J.; Wang, J.; Li, X.; Zhao, W.; Nie, Z. Tunable and white up-conversion emission from Tm3+-Ho3+-Yb3+/-Nd3+ co-doped GdVO4 phosphors under 808-nm excitation. J. Mater. Sci. Mater. Electron. 2021, 32, 8149–8156. [Google Scholar] [CrossRef]
- Kasprowicz, D.; Brik, M.G.; Majchrowski, A.; Michalski, E.; Głuchowski, P. Up-conversion emission in KGd(WO ) single crystals triply-doped with Er /Yb /Tm, Tb /Yb /Tm and Pr /Yb /Tm ions. Opt. Mater. 2011, 33, 1595–1601. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Hieu, L.; Zhu, R.; Ghida, E.B.; Wei, Y.; Han, G. Upconverting NIR Photons for Bioimaging. Nanomaterials 2015, 5, 2148–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Qiao, R.; Fang, F.; Wang, X.; Gao, M. NaGdF4 Nanoparticle-Based Molecular Probes for Magnetic Resonance Imaging of Intraperitoneal Tumor Xenografts In Vivo. Acs Nano 2012, 7, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhang, X.; Zheng, H.; Gao, W.; He, E. Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion. J. Alloy. Compd. 2013, 554, 395–399. [Google Scholar] [CrossRef]
- Jiang, G.; Pichaandi, J.; Johnson, N.; Burke, R.D.; Van Veggel, F.C.J.M. An Effective Polymer Cross-Linking Strategy To Obtain Stable Dispersions of Upconverting NaYF4 Nanoparticles in Buffers and Biological Growth Media for Biolabeling Applications. Langmuir 2012, 28, 3239–3247. [Google Scholar] [CrossRef]
- Huang, W.; Shen, J.; Lei, W.; Chang, Y.; Ye, M. Y2O3:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties. Mater. Res. Bull. 2012, 47, 3875–3880. [Google Scholar] [CrossRef]
Name | Sequences (5′-3′) |
---|---|
miRNA-155 | UUAAUGCUAAUCGUGAUAGGGGU |
miRNA-150 | UCUCCCAACCCUUGUACCAGUG |
miRNA-155 matched DNA strands | NH2-CCCCCCCCCCCC-ACCCCTATCACGATTAGCATTAA-CGCTAT-FAM |
miRNA-150 matched DNA strands | NH2-CCCCCCCCCCCC-CACTGGTACAAGGGTTGGGAGA-CGCTAT-FAM |
miRNA-155 single base mismatch | UUAAGGCUAAUCGUGAUAGGGGU |
miRNA-155 double base mismatch | UUAAGGCUAAUAGUGAUAGGGGU |
miRNA-155 complete base mismatch | AATTACGATTAGCACTATCCCCA |
Fluorescent Substance | I802/I345 | I802/I362 | I802/I450 | I802/I477 | I802/I646 |
---|---|---|---|---|---|
NaYF4:20%Yb3+, 0.5%Tm3+ | 1.97 | 2.38 | 1.24 | 1.13 | 3.65 |
Fluorescent probes | 2.09 | 2.71 | 1.23 | 1.01 | 3.37 |
FP + CmiRNA-155 | 2.87 | 2.52 | 2.01 | 1.96 | 3.32 |
FP+ M2miRNA-155 | 5.19 | 4.38 | 3.61 | 3.29 | 5.5 |
FP + M1miRNA-155 | 4.66 | 4.21 | 3.38 | 3.22 | 4.69 |
FP + miRNA-155 | 7.92 | 7.28 | 5.19 | 4.06 | 6.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; He, Y.; Rao, H.; Zhang, L.; Nguyen, W.; Wang, J.; Wu, Y.; Han, C.; Xing, C.; Yan, C.; et al. Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. Nanomaterials 2022, 12, 1787. https://doi.org/10.3390/nano12111787
Ding Z, He Y, Rao H, Zhang L, Nguyen W, Wang J, Wu Y, Han C, Xing C, Yan C, et al. Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. Nanomaterials. 2022; 12(11):1787. https://doi.org/10.3390/nano12111787
Chicago/Turabian StyleDing, Zhou, Yue He, Hongtao Rao, Le Zhang, William Nguyen, Jingjing Wang, Ying Wu, Caiqin Han, Christina Xing, Changchun Yan, and et al. 2022. "Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection" Nanomaterials 12, no. 11: 1787. https://doi.org/10.3390/nano12111787
APA StyleDing, Z., He, Y., Rao, H., Zhang, L., Nguyen, W., Wang, J., Wu, Y., Han, C., Xing, C., Yan, C., Chen, W., & Liu, Y. (2022). Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. Nanomaterials, 12(11), 1787. https://doi.org/10.3390/nano12111787