On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface
Abstract
:1. Introduction
2. Mathematical Formulation
3. Solution Procedure
4. Results and Discussion
5. Conclusions
- The velocity gradient enhanced as the magnitude of , and elevated, although it dropped significantly as the valuation of and extended.
- It is worth mentioning that the velocity field uplifted for and when Sutterby parameter S take negative values and decrease when Sutterby parameter is positive.
- Temperature goes up if the magnitudes of , , , b, , as well as upsurge, whereas it drops as the valuation of grows.
- The concentration distribution for , and reveals a declining trend while upsurge with higher .
- Skin friction reduces when and takes higher values. Furthermore, it escalates in direct proportion to S, , , and .
- The Nusselt number explicitly elevated as the values of , as well as improved. The inverse attitude of , b, , and is revealed.
- The Sherwood quantity falls for as well as while surging for and .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
List of Symbols | |
velocity components | |
Cartesian coordinates | |
S | flow deportment index |
consistency index | |
magnetic permeability | |
electric field strength | |
Forchheimer quantity | |
T | temperature |
C | solutal density |
thermal conductivity | |
specific heat | |
heat relaxation time | |
radiative heat flux | |
g | gravity acceleration |
S | deportment index |
consistency index | |
Prandtl number | |
Reynolds number | |
heat transfer coefficient | |
Brownian motion | |
Sutterby Deborah number | |
buoyancy ratio | |
thermophorsis coefficient | |
microorganism diffusivity coefficient | |
chemotaxis constant | |
swimming speed of cell | |
bio-convection Rayleigh number | |
Prandtl number | |
Grashoff number | |
M | magnetic field |
Brownian motion parameter | |
thermophoresis parameter | |
Schmidt number | |
Lewis number | |
Greek Symbols | |
fluid density | |
Maxwell parameter | |
thermal diffusivity | |
ratio of heat capacity of nanofluid | |
Subscripts | |
p | Nanoparticles |
w | On the wall |
∞ | Ambient |
References
- Shende, T.; Niasar, V.J.; Babaei, M. Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model. Rheol. Acta 2021, 60, 11–21. [Google Scholar] [CrossRef]
- Chang, A.; Sun, H.; Vafai, K.; Kosari, E. Numerical analysis of flow and forced convection heat transfer of non-Newtonian fluid in a pipe based on fractional constitutive model. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 2680–2697. [Google Scholar] [CrossRef]
- Bisht, M.; Patil, D.V. Assessment of multiple relaxation time-lattice Boltzmann method framework for non-Newtonian fluid flow simulations. Eur. J. Mech.-B/Fluids 2021, 85, 322–334. [Google Scholar] [CrossRef]
- Abu-Bakr, A.; Abu-Nab, A. Vapour bubble growth within a viscous mixture non-Newtonian fluid between two-phase turbulent flow. Int. J. Ambient. Energy 2021. [Google Scholar] [CrossRef]
- Sohail, M.; Alrabaiah, H.; Nazir, U. Radiative flow of MHD non-Newtonian fluid by utilizing the updated version of heat flux model under Joule heating. Heat Transf. 2021, 50, 3407–3425. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Heat Transfer Enhancement Feature of the Non-Fourier Cattaneo–Christov Heat Flux Model. J. Heat Transf. 2021, 143, 094501. [Google Scholar] [CrossRef]
- Ali, B.; Khan, S.A.; Hussein, A.K.; Thumma, T.; Hussain, S. Hybrid nanofluids: Significance of gravity modulation, heat source/sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation. Appl. Math. Comput. 2022, 419, 126878. [Google Scholar] [CrossRef]
- Khan, S.A.; Ali, B.; Eze, C.; Lau, K.T.; Ali, L.; Chen, J.; Zhao, J. Magnetic dipole and thermal radiation impacts on stagnation point flow of micropolar based nanofluids over a vertically stretching sheet: Finite element approach. Processes 2021, 9, 1089. [Google Scholar] [CrossRef]
- Sadiq, K.; Jarad, F.; Siddique, I.; Ali, B. Soret and radiation effects on mixture of ethylene glycol-water (50%-50%) based Maxwell nanofluid flow in an upright channel. Complexity 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Ali, B.; Rasool, G.; Hussain, S.; Baleanu, D.; Bano, S. Finite element study of magnetohydrodynamics (MHD) and activation energy in Darcy–Forchheimer rotating flow of Casson Carreau nanofluid. Processes 2020, 8, 1185. [Google Scholar] [CrossRef]
- Tayyab, M.; Siddique, I.; Jarad, F.; Ashraf, M.K.; Ali, B. Numerical solution of 3D rotating nanofluid flow subject to Darcy-Forchheimer law, bio-convection and activation energy. S. Afr. J. Chem. Eng. 2022, 40, 48–56. [Google Scholar] [CrossRef]
- Ali, L.; Wang, Y.; Ali, B.; Liu, X.; Din, A.; Al Mdallal, Q. The function of nanoparticle’s diameter and Darcy-Forchheimer flow over a cylinder with effect of magnetic field and thermal radiation. Case Stud. Therm. Eng. 2021, 28, 101392. [Google Scholar] [CrossRef]
- Akram, J.; Akbar, N.S.; Tripathi, D. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model. Microvasc. Res. 2020, 132, 104062. [Google Scholar] [CrossRef]
- Salahuddin, T.; Ali, Z.; Awais, M.; Khan, M.; Altanji, M. A flow behavior of Sutterby nanofluid near the catalytic parabolic surface. Int. Commun. Heat Mass Transf. 2022, 131, 105821. [Google Scholar] [CrossRef]
- Hayat, T.; Masood, F.; Qayyum, S.; Alsaedi, A. Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation. Phys. A Stat. Mech. Its Appl. 2020, 544, 123439. [Google Scholar] [CrossRef]
- Nawaz, M. Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol. Phys. A Stat. Mech. Its Appl. 2020, 537, 122447. [Google Scholar] [CrossRef]
- Mir, N.A.; Farooq, M.; Rizwan, M.; Ahmad, F.; Ahmad, S.; Ahmad, B. Analysis of thermally stratified flow of Sutterby nanofluid with zero mass flux condition. J. Mater. Res. Technol. 2020, 9, 1631–1639. [Google Scholar]
- Sabir, Z.; Imran, A.; Umar, M.; Zeb, M.; Shoaib, M.; Raja, M.A.Z. A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm. Sci. 2021, 25, 1975–1987. [Google Scholar] [CrossRef]
- Mahdavi, M.; Sharifpur, M.; Meyer, J.P. Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness. Int. Commun. Heat Mass Transf. 2020, 118, 104842. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Esfe, M.H.; Esfandeh, S.; Hosseinizadeh, E. Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry. Int. Commun. Heat Mass Transf. 2020, 118, 104810. [Google Scholar] [CrossRef]
- Swain, K.; Animasaun, I.L.; Ibrahim, S.M. Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field. Int. J. Ambient. Energy 2021. [Google Scholar] [CrossRef]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S.; Khan, S.A. Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet. Coatings 2020, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Abdal, S.; Ali, B.; Younas, S.; Ali, L.; Mariam, A. Thermo-diffusion and multislip effects on MHD mixed convection unsteady flow of micropolar nanofluid over a shrinking/stretching sheet with radiation in the presence of heat source. Symmetry 2020, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source. Appl. Sci. 2019, 9, 5217. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Turkyilmazoglu, M.; Alsaedi, A. Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Nie, Y.; Khan, S.A.; Sadiq, M.T.; Rehman, A.U.; Abdal, S. Variable viscosity effects on unsteady mhd an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: Fem approach. Symmetry 2020, 12, 234. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Hussain, S.; Raju, C.; Seth, G.; Chamkha, A.J. Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: A numerical and statistical approach. Chin. J. Phys. 2020, 68, 671–683. [Google Scholar] [CrossRef]
- Hussain, S.M.; Sharma, R.; Mishra, M.R.; Alrashidy, S.S. Hydromagnetic dissipative and radiative graphene maxwell nanofluid flow past a stretched sheet-numerical and statistical analysis. Mathematics 2020, 8, 1929. [Google Scholar] [CrossRef]
- Abro, K.A.; Soomro, M.; Atangana, A.; Gómez-Aguilar, J. Thermophysical properties of Maxwell Nanofluids via fractional derivatives with regular kernel. J. Therm. Anal. Calorim. 2022, 147, 449–459. [Google Scholar] [CrossRef]
- Ahmed, J.; Khan, M.; Ahmad, L. Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction. Phys. A Stat. Mech. Its Appl. 2020, 551, 123948. [Google Scholar] [CrossRef]
- Shah, Z.; Alzahrani, E.; Jawad, M.; Khan, U. Microstructure and inertial characteristics of MHD suspended SWCNTs and MWCNTs based maxwell nanofluid flow with bio-convection and entropy generation past A permeable vertical cone. Coatings 2020, 10, 998. [Google Scholar] [CrossRef]
- Ali, B.; Hussain, S.; Nie, Y.; Khan, S.A.; Naqvi, S.I.R. Finite element simulation of bioconvection Falkner–Skan flow of a Maxwell nanofluid fluid along with activation energy over a wedge. Phys. Scr. 2020, 95, 095214. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alsaadi, F.; Ali, S.; Hayat, T. Stagnation point flow of Burgers’ fluid and mass transfer with chemical reaction and porosity. J. Mech. 2013, 29, 453–460. [Google Scholar] [CrossRef]
- Ibrahim, W.; Negera, M. MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction. J. Egypt. Math. Soc. 2020, 28, 7. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.M.A.; Ali, B.; Wang, Q.; Zhao, C. Stefan Blowing Impacts on Unsteady MHD Flow of Nanofluid over a Stretching Sheet with Electric Field, Thermal Radiation and Activation Energy. Coatings 2021, 11, 1048. [Google Scholar] [CrossRef]
- Yahya, A.U.; Salamat, N.; Habib, D.; Ali, B.; Hussain, S.; Abdal, S. Implication of Bio-convection and Cattaneo-Christov heat flux on Williamson Sutterby nanofluid transportation caused by a stretching surface with convective boundary. Chin. J. Phys. 2021, 73, 706–718. [Google Scholar] [CrossRef]
- Sajid, T.; Tanveer, S.; Sabir, Z.; Guirao, J. Impact of activation energy and temperature-dependent heat source/sink on Maxwell–Sutterby fluid. Math. Probl. Eng. 2020, 2020, 5251804. [Google Scholar] [CrossRef]
- Abdal, S.; Siddique, I.; Alshomrani, A.S.; Jarad, F.; Din, I.S.U.; Afzal, S. Significance of chemical reaction with activation energy for Riga wedge flow of tangent hyperbolic nanofluid in existence of heat source. Case Stud. Therm. Eng. 2021, 28, 101542. [Google Scholar] [CrossRef]
- Abdal, S.; Habib, U.; Siddique, I.; Akgül, A.; Ali, B. Attribution of Multi-slips and Bioconvection for Micropolar Nanofluids Transpiration Through Porous Medium over an Extending Sheet with PST and PHF Conditions. Int. J. Appl. Comput. Math. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Abdal, S.; Siddique, I.; Alrowaili, D.; Al-Mdallal, Q.; Hussain, S. Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abdal, S.; Siddique, I.; Afzal, S.; Sharifi, S.; Salimi, M.; Ahmadian, A. An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface. Nanomaterials 2022, 12, 599. [Google Scholar] [CrossRef] [PubMed]
Ibrahim and Negera [35] | Sajid et al. [38] | Present Results | |
---|---|---|---|
0.0 | 1.2105 | 1.1706 | 1.1917 |
0.3 | 1.3578 | 1.3393 | 1.3485 |
0.5 | 1.4478 | 1.4408 | 1.4456 |
1.0 | 1.6504 | 1.6677 | 1.6545 |
S | ||||||||
---|---|---|---|---|---|---|---|---|
0.01 | 0.5 | 0.5 | 0.5 | 0.1 | 1.0 | 0.1 | 0.3 | 1.0792 |
0.03 | 1.0780 | |||||||
0.05 | 1.0758 | |||||||
0.01 | 0.1 | 1.0191 | ||||||
0.3 | 1.0486 | |||||||
0.5 | 1.0792 | |||||||
0.5 | 0.5 | 1.0792 | ||||||
0.7 | 1.1109 | |||||||
0.9 | 1.1440 | |||||||
0.5 | 0.5 | 1.0792 | ||||||
1.0 | 1.1610 | |||||||
1.5 | 1.2522 | |||||||
0.5 | 0.0 | 1.1889 | ||||||
0.1 | 1.0792 | |||||||
0.2 | 0.9685 | |||||||
0.1 | 1.0 | 1.0792 | ||||||
2.0 | 1.0790 | |||||||
3.0 | 1.0788 | |||||||
1.0 | 0.1 | 1.0792 | ||||||
0.2 | 1.1209 | |||||||
0.3 | 1.1608 | |||||||
0.1 | 0.1 | 1.0359 | ||||||
0.2 | 1.0579 | |||||||
0.3 | 1.0792 |
b | ||||||||
---|---|---|---|---|---|---|---|---|
1.0 | 3.0 | 0.5 | 0.5 | 0.01 | 1.0 | 0.5 | 0.5 | 0.0408 |
2.0 | 0.0831 | |||||||
3.0 | 0.0985 | |||||||
1.0 | 1.0 | 0.1063 | ||||||
2.0 | 0.0773 | |||||||
3.0 | 0.0408 | |||||||
3.0 | 0.1 | 0.0517 | ||||||
0.3 | 0.0462 | |||||||
0.5 | 0.0408 | |||||||
0.5 | 0.1 | 0.1875 | ||||||
0.3 | 0.1145 | |||||||
0.5 | 0.0408 | |||||||
0.5 | 0.01 | 0.0408 | ||||||
0.03 | 0.0416 | |||||||
0.05 | 0.0429 | |||||||
0.01 | 1.0 | 0.0408 | ||||||
3.0 | 0.0403 | |||||||
5.0 | 0.0387 | |||||||
1.0 | 0.1 | 0.0921 | ||||||
0.3 | 0.0647 | |||||||
0.5 | 0.0408 | |||||||
0.5 | 0.1 | 0.1075 | ||||||
0.3 | 0.0709 | |||||||
0.5 | 0.0408 |
3.0 | 3.0 | 0.5 | 0.5 | 1.6124 |
4.0 | 1.8410 | |||
5.0 | 2.0313 | |||
5.0 | 1.0 | 1.1343 | ||
2.0 | 1.6545 | |||
3.0 | 2.0313 | |||
3.0 | 0.1 | 2.2199 | ||
0.3 | 2.0662 | |||
0.5 | 2.0313 | |||
0.5 | 0.1 | 1.9574 | ||
0.3 | 1.9925 | |||
0.5 | 2.0313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jaradat, M.M.M.; Siddique, I.; Mousa, A.A.A.; Abdal, S.; Mustafa, Z.; Ali, H.M. On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface. Nanomaterials 2022, 12, 1834. https://doi.org/10.3390/nano12111834
Wang W, Jaradat MMM, Siddique I, Mousa AAA, Abdal S, Mustafa Z, Ali HM. On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface. Nanomaterials. 2022; 12(11):1834. https://doi.org/10.3390/nano12111834
Chicago/Turabian StyleWang, Wen, Mohammed M. M. Jaradat, Imran Siddique, Abd Allah A. Mousa, Sohaib Abdal, Zead Mustafa, and Hafiz Muhammad Ali. 2022. "On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface" Nanomaterials 12, no. 11: 1834. https://doi.org/10.3390/nano12111834
APA StyleWang, W., Jaradat, M. M. M., Siddique, I., Mousa, A. A. A., Abdal, S., Mustafa, Z., & Ali, H. M. (2022). On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface. Nanomaterials, 12(11), 1834. https://doi.org/10.3390/nano12111834