Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Composition of As-Implanted Samples
3.2. Light-Emitting Properties of As-Implanted and Annealed Samples
3.3. Direct Observation of nc-Ga2O3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for Ultra-High Power Rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, J.; Zhang, C.; Feng, Q.; Zhao, S.; Ma, P.; Hao, Y. A Review of the Most Recent Progresses of State-of-Art Gallium Oxide Power Devices. J. Semicond. 2019, 40, 11803. [Google Scholar] [CrossRef]
- Kaur, D.; Kumar, M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021, 9, 2002160. [Google Scholar] [CrossRef]
- Almaev, A.V.; Chernikov, E.V.; Davletkildeev, N.A.; Sokolov, D.V. Oxygen Sensors Based on Gallium Oxide Thin Films with Addition of Chromium. Superlattices Microstruct. 2020, 139, 106392. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A Review of Ga2O3 Materials, Processing, and Devices. Appl. Phys. Rev. 2018, 5, 11301. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zou, Y.; Ding, M.; Qin, Y.; Zhang, Z.; Ma, X.; Tan, P.; Yu, S.; Zhou, X.; Zhao, X.; et al. Review of Polymorphous Ga2O3 materials and Their Solar-Blind Photodetector Applications. J. Phys. D. Appl. Phys. 2020, 54, 43001. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Xu, S.; Zhang, C.; Feng, Q.; Zhang, Y.; Ning, J.; Zhao, S.; Zhou, H.; Hao, Y. Progress in State-of-the-Art Technologies of Ga2O3 devices. J. Phys. D. Appl. Phys. 2021, 54, 243001. [Google Scholar] [CrossRef]
- Bosi, M.; Mazzolini, P.; Seravalli, L.; Fornari, R. Ga2O3 polymorphs: Tailoring the Epitaxial Growth Conditions. J. Mater. Chem. C 2020, 8, 10975–10992. [Google Scholar] [CrossRef]
- Sharma, A.; Varshney, M.; Saraswat, H.; Chaudhary, S.; Parkash, J.; Shin, H.-J.; Chae, K.-H.; Won, S.-O. Nano-Structured Phases of Gallium Oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): Fabrication, Structural, and Electronic Structure Investigations. Int. Nano Lett. 2020, 10, 71–79. [Google Scholar] [CrossRef]
- Deshmane, C.A.; Jasinski, J.B.; Carreon, M.A. Thermally Stable Nanocrystalline Mesoporous Gallium Oxide Phases. Eur. J. Inorg. Chem. 2009, 2009, 3275–3281. [Google Scholar] [CrossRef]
- Cui, L.; Wang, H.; Xin, B.; Mao, G. One-Step Rapid Synthesis of Ultrafine γ-Ga2O3 Nanocrystals by Microwave Hydrothermal Method in Ammonium Hydroxide Medium. Appl. Phys. A Mater. Sci. Process. 2017, 123, 364. [Google Scholar] [CrossRef]
- Sigaev, V.N.; Golubev, N.V.; Ignat’Eva, E.S.; Paleari, A.; Lorenzi, R. Light-Emitting Ga-Oxide Nanocrystals in Glass: A New Paradigm for Low-Cost and Robust UV-to-Visible Solar-Blind Converters and UV Emitters. Nanoscale 2014, 6, 1763. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.H.; Wang, Z.K.; Wang, K.L.; Zhuo, M.P.; Zhang, Y.; Igbari, F.; Ye, Q.Q.; Liao, L.S. γ-Ga2O3 Nanocrystals Electron-Transporting Layer for High-Performance Perovskite Solar Cells. Sol. RRL 2019, 3, 1900201. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, H.; Sun, B.; Ji, Y.; Lu, X.; Tian, H.; Ren, J.; Guo, S.; Zhang, J.; Yang, J.; et al. Photonic Engineering of Superbroadband Near-Infrared Emission in Nanoglass Composites Containing Hybrid Metal and Dielectric Nanocrystals. Photonics Res. 2020, 8, 698. [Google Scholar] [CrossRef]
- Castro-Fernández, P.; Blanco, M.V.; Verel, R.; Willinger, E.; Fedorov, A.; Abdala, P.M.; Müller, C.R. Atomic-Scale Insight into the Structure of Metastable γ-Ga2O3 Nanocrystals and Their Thermally-Driven Transformation to β-Ga2O3. J. Phys. Chem. C 2020, 124, 20578. [Google Scholar] [CrossRef]
- Chen, T.; Tang, K. γ-Ga2O3 Quantum Dots with Visible Blue-Green Light Emission Property. Appl. Phys. Lett. 2007, 90, 053104. [Google Scholar] [CrossRef]
- El-Sayed, E.I.; Al-Ghamdi, A.A.; Al-Heniti, S.; Al-Marzouki, F.; El-Tantawy, F. Synthesis of Ultrafine β-Ga2O3 Nanopowder via Hydrothermal Approach: A Strong UV “Excimer-like” Emission. Mater. Lett. 2011, 65, 317–321. [Google Scholar] [CrossRef]
- Wang, T.; Farvid, S.S.; Abulikemu, M.; Radovanovic, P.V. Size-Tunable Phosphorescence in Colloidal Metastable γ-Ga2O3 Nanocrystals. J. Am. Chem. Soc. 2010, 132, 9250–9252. [Google Scholar] [CrossRef]
- Stanish, P.C.; Yin, P.; Radovanovic, P.V. Extending Afterglow of Ga2O3 Nanocrystals by Dy3+ Dopant-Induced Carrier Trapping: Toward Design of Persistent Colloidal Nanophosphors. Chem. Mater. 2020, 32, 7516−7523. [Google Scholar] [CrossRef]
- Wang, T.; Layek, A.; Hosein, I.D.; Chirmanov, V.; Radovanovic, P.V. Correlation between Native Defects and Dopants in Colloidal Lanthanide-Doped Ga2O3 Nanocrystals: A Path to Enhance Functionality and Control Optical Properties. J. Mater. Chem. C 2014, 2, 3212. [Google Scholar] [CrossRef]
- Nikolskaya, A.; Okulich, E.; Korolev, D.; Stepanov, A.; Nikolichev, D.; Mikhaylov, A.; Tetelbaum, D.; Almaev, A.; Bolzan, C.A.; Buaczik, A.; et al. Ion Implantation in β-Ga2O3: Physics and Technology. J. Vac. Sci. Technol. A 2021, 39, 30802. [Google Scholar] [CrossRef]
- Mikhaylov, A.N.; Belov, A.I.; Kostyuk, A.B.; Zhavoronkov, I.Y.; Korolev, D.S.; Nezhdanov, A.V.; Ershov, A.V.; Guseinov, D.V.; Gracheva, T.A.; Malygin, N.D.; et al. Peculiarities of the Formation and Properties of Light-Emitting Structures Based on Ion-Synthesized Silicon Nanocrystals in SiO2 and Al2O3 Matrices. Phys. Solid State 2012, 54, 368–382. [Google Scholar] [CrossRef]
- Romanov, I.; Komarov, F.; Milchanin, O.; Vlasukova, L.; Parkhomenko, I.; Makhavikou, M.; Wendler, E.; Mudryi, A.; Togambayeva, A. Structural Evolution and Photoluminescence of SiO2 Layers with Sn Nanoclusters Formed by Ion Implantation. J. Nanomater. 2019, 2019, 9486745. [Google Scholar] [CrossRef] [Green Version]
- Parkhomenko, I.; Vlasukova, L.; Komarov, F.; Makhavikou, M.; Milchanin, O.; Wendler, E.; Zapf, M.; Ronning, C. Luminescence of ZnO Nanocrystals in Silica Synthesized by Dual (Zn, O) Implantation and Thermal Annealing. J. Phys. D. Appl. Phys. 2021, 54, 265104. [Google Scholar] [CrossRef]
- Rajamani, S.; Arora, K.; Konakov, A.; Belov, A.; Korolev, D.; Nikolskaya, A.; Mikhaylov, A.; Surodin, S.; Kryukov, R.; Nikolitchev, D.; et al. Deep UV Narrow-Band Photodetector Based on Ion Beam Synthesized Indium Oxide Quantum Dots in Al2O3 Matrix. Nanotechnology 2018, 29, 305603. [Google Scholar] [CrossRef]
- Rajamani, S.; Arora, K.; Belov, A.; Korolev, D.; Nikolskaya, A.; Usov, Y.; Pavlov, D.; Mikhaylov, A.; Tetelbaum, D.; Kumar, M. Enhanced Solar-Blind Photodetection Performance of Encapsulated Ga2O3 Nanocrystals in Al2O3 Matrix. IEEE Sens. J. 2018, 18, 4046–4052. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-Based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Lorenzi, R.; Golubev, N.V.; Ignat’eva, E.S.; Sigaev, V.N.; Ferrara, C.; Acciarri, M.; Vanacore, G.M.; Paleari, A. Defect-Assisted Photocatalytic Activity of Glass-Embedded Gallium Oxide Nanocrystals. J. Colloid Interface Sci. 2022, 608, 2830–2838. [Google Scholar] [CrossRef]
- Machon, D.; McMillan, P.F.; Xu, B.; Dong, J. High-Pressure Study of the β-to-α Transition in Ga2O3. Phys. Rev. B 2006, 73, 94125. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Zhang, Y.; Liu, D.; Tong, N.; Lin, J.; Chen, L.; Zhang, Z.; Wang, X. Phase Transition of Two-Dimensional β-Ga2O3 Nanosheets from Ultrathin γ-Ga2O3 Nanosheets and Their Photocatalytic Hydrogen Evolution Activities. ACS Omega 2018, 3, 14469−14476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, R.; Rao, A.M.; Xu, B.; Dong, J.; Sharma, S.; Sunkara, M.K. Blueshifted Raman Scattering and Its Correlation with the [110] Growth Direction in Gallium Oxide Nanowires. J. Appl. Phys. 2005, 98, 94312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korolev, D.S.; Matyunina, K.S.; Nikolskaya, A.A.; Kriukov, R.N.; Nezhdanov, A.V.; Belov, A.I.; Mikhaylov, A.N.; Sushkov, A.A.; Pavlov, D.A.; Yunin, P.A.; et al. Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix. Nanomaterials 2022, 12, 1840. https://doi.org/10.3390/nano12111840
Korolev DS, Matyunina KS, Nikolskaya AA, Kriukov RN, Nezhdanov AV, Belov AI, Mikhaylov AN, Sushkov AA, Pavlov DA, Yunin PA, et al. Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix. Nanomaterials. 2022; 12(11):1840. https://doi.org/10.3390/nano12111840
Chicago/Turabian StyleKorolev, Dmitry S., Kristina S. Matyunina, Alena A. Nikolskaya, Ruslan N. Kriukov, Alexey V. Nezhdanov, Alexey I. Belov, Alexey N. Mikhaylov, Artem A. Sushkov, Dmitry A. Pavlov, Pavel A. Yunin, and et al. 2022. "Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix" Nanomaterials 12, no. 11: 1840. https://doi.org/10.3390/nano12111840
APA StyleKorolev, D. S., Matyunina, K. S., Nikolskaya, A. A., Kriukov, R. N., Nezhdanov, A. V., Belov, A. I., Mikhaylov, A. N., Sushkov, A. A., Pavlov, D. A., Yunin, P. A., Drozdov, M. N., & Tetelbaum, D. I. (2022). Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix. Nanomaterials, 12(11), 1840. https://doi.org/10.3390/nano12111840