Structural and Magnetic Phase Transitions in BiFe1 − xMnxO3 Solid Solution Driven by Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ederer, C.; Spaldin, N.A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 2005, 71, 060401. [Google Scholar] [CrossRef] [Green Version]
- Sosnowska, I.; Schäfer, W.; Kockelmann, W.; Andersen, K.H.; Troyanchuk, I.O. Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl. Phys. A Mater. Sci. Processing 2002, 74, S1040–S1042. [Google Scholar] [CrossRef]
- Spaldin, N.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Lebeugle, D.; Mougin, A.; Viret, M.; Colson, D.; Ranno, L. Electric Field Switching of the Magnetic Anisotropy of a Ferromagnetic Layer Exchange Coupled to the Multiferroic Compound BiFeO3. Phys. Rev. Lett. 2009, 103, 257601. [Google Scholar] [CrossRef] [Green Version]
- Karpinsky, V.D.; Troyanchuk, I.O.; Tovar, M.; Sikolenko, V.; Efimov, V.; Efimova, E.; Shur, V.Y.; Kholkin, A.L. Temperature and Composition-Induced Structural Transitions in Bi1 − xLa(Pr)xFeO3 Ceramics. J. Am. Ceram. Soc. 2014, 97, 2631–2638. [Google Scholar] [CrossRef]
- Khomchenko, A.V.; Ivanov, M.S.; Karpinsky, D.V.; Paixão, J.A. Composition-driven magnetic and structural phase transitions in Bi1 − xPrxFe1 − xMnxO3 multiferroics. J. Appl. Phys. 2017, 122, 124103. [Google Scholar] [CrossRef]
- Giraldo, M.; Meier, Q.N.; Bortis, A.; Nowak, D.; Spaldin, N.A.; Fiebig, M.; Weber, M.C.; Lottermoser, T. Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat. Commun. 2021, 12, 3093. [Google Scholar] [CrossRef] [PubMed]
- Karpinsky, V.D.; Troyanchuk, I.O.; Mantytskaya, O.S.; Khomchenko, V.A.; Kholkin, A.L. Structural stability and magnetic properties of Bi1 − xLa(Pr)xFeO3 solid solutions. Solid State Commun. 2011, 151, 1686–1689. [Google Scholar] [CrossRef]
- Kimura, T.; Kawamoto, S.; Yamada, I.; Azuma, M.; Takano, M.; Tokura, Y. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 2003, 67, 180401. [Google Scholar] [CrossRef]
- Azuma, M.; Kanda, H.; Belik, A.A.; Shimakawa, Y.; Takano, M. Magnetic and structural properties of BiFe1 − xMnxO3. J. Magn. Magn. Mater. 2007, 310, 1177–1179. [Google Scholar] [CrossRef]
- Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; van Tendeloo, G.; Takayama-Muromachi, E. Structure and Magnetic Properties of BiFe0.75Mn0.25O3 Perovskite Prepared at Ambient and High Pressure. Chem. Mater. 2011, 23, 4505–4514. [Google Scholar] [CrossRef]
- Selbach, M.S.; Tybell, T.; Einarsrud, M.-A.; Grande, T. Structure and Properties of Multiferroic Oxygen Hyperstoichiometric BiFe1 − xMnxO3+δ. Chem. Mater. 2009, 21, 5176–5186. [Google Scholar] [CrossRef]
- Khomchenko, A.V.; Pereira, L.C.J.; Paixão, J.A. Structural and magnetic phase transitions in Bi1 − xNdxFe1 − xMnxO3 multiferroics. J. Appl. Phys. 2014, 115, 034102. [Google Scholar] [CrossRef]
- Karpinsky, V.D.; Silibin, M.V.; Zhaludkevich, D.V.; Latushka, S.I.; Sikolenko, V.V.; Többens, D.M.; Sheptyakov, D.; Khomchenko, V.A.; Belik, A.A. Crystal and Magnetic Structure Transitions in BiMnO3+δ Ceramics Driven by Cation Vacancies and Temperature. Materials 2021, 14, 5805. [Google Scholar] [CrossRef]
- Atou, T.; Chiba, H.; Ohoyama, K.; Yamaguchi, Y.; Syono, Y. Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 1999, 145, 639–642. [Google Scholar] [CrossRef]
- Belik, A.A. Origin of Magnetization Reversal and Exchange Bias Phenomena in Solid Solutions of BiFeO3–BiMnO3: Intrinsic or Extrinsic? Inorg. Chem. 2013, 52, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, I.; Schäfer, W.; Troyanchuk, I.O. Investigations of crystal and magnetic structure of BiMn0.2Fe0.8O3. Phys. B 2000, 276–278, 576–577. [Google Scholar] [CrossRef]
- Daniel, M.; Többens, S.Z. KMC-2: An X-ray beamline with dedicated diffraction and XAS endstations at BESSY II. J. Large Scale Res. Facil. 2016, 2, A49. [Google Scholar]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Yang, C.-H.; Yildiz, F.; Lee, S.-H.; Jeong, Y.H.; Chon, U.; Koo, T.-Y. Synthesis of nanoscale composites of exchange biased MnFe2O4 and Mn-doped BiFeO3. Appl. Phys. Lett. 2007, 90, 163116. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Troyanchuk, I.O.; Sikolenko, V.; Efimov, V.; Kholkin, A.L. Electromechanical and magnetic properties of BiFeO3-LaFeO3-CaTiO3 ceramics near the rhombohedral-orthorhombic phase boundary. J. Appl. Phys. 2013, 113, 187218–187223. [Google Scholar] [CrossRef]
- Rusakov, D.A.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E. Structural Evolution of the BiFeO3−LaFeO3 System. Chem. Mater. 2010, 23, 285. [Google Scholar] [CrossRef]
- Selbach, S.M.; Tybell, T.; Einarsrud, M.-A.; Grande, T. The Ferroic Phase Transitions of BiFeO3. Adv. Mater. 2008, 20, 3692–3696. [Google Scholar] [CrossRef]
- Belik, A.A.; Kodama, K.; Igawa, N.; Shamoto, S.-I.; Kosuda, K.; Takayama-Muromachi, E. Crystal and Magnetic Structures and Properties of BiMnO3+δ. J. Am. Chem. Soc. 2010, 132, 8137–8144. [Google Scholar] [CrossRef]
- Sosnowska, I.; Zvezdin, A.K. Origin of the long period magnetic ordering in BiFeO3. J. Magn. Magn. Mater. 1995, 140–144, 167–168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpinsky, D.V.; Silibin, M.V.; Latushka, S.I.; Zhaludkevich, D.V.; Sikolenko, V.V.; Al-Ghamdi, H.; Almuqrin, A.H.; Sayyed, M.I.; Belik, A.A. Structural and Magnetic Phase Transitions in BiFe1 − xMnxO3 Solid Solution Driven by Temperature. Nanomaterials 2022, 12, 1565. https://doi.org/10.3390/nano12091565
Karpinsky DV, Silibin MV, Latushka SI, Zhaludkevich DV, Sikolenko VV, Al-Ghamdi H, Almuqrin AH, Sayyed MI, Belik AA. Structural and Magnetic Phase Transitions in BiFe1 − xMnxO3 Solid Solution Driven by Temperature. Nanomaterials. 2022; 12(9):1565. https://doi.org/10.3390/nano12091565
Chicago/Turabian StyleKarpinsky, Dmitry V., Maxim V. Silibin, Siarhei I. Latushka, Dmitry V. Zhaludkevich, Vadim V. Sikolenko, Hanan Al-Ghamdi, Aljawhara H. Almuqrin, M. I. Sayyed, and Alexei A. Belik. 2022. "Structural and Magnetic Phase Transitions in BiFe1 − xMnxO3 Solid Solution Driven by Temperature" Nanomaterials 12, no. 9: 1565. https://doi.org/10.3390/nano12091565
APA StyleKarpinsky, D. V., Silibin, M. V., Latushka, S. I., Zhaludkevich, D. V., Sikolenko, V. V., Al-Ghamdi, H., Almuqrin, A. H., Sayyed, M. I., & Belik, A. A. (2022). Structural and Magnetic Phase Transitions in BiFe1 − xMnxO3 Solid Solution Driven by Temperature. Nanomaterials, 12(9), 1565. https://doi.org/10.3390/nano12091565