Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Wu, H.; Gao, B.; Eryilmaz, S.B.; Huang, X.; Zhang, W.; Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S.P.; et al. Face Classification Using Electronic Synapses. Nat. Commun. 2017, 8, 15199. [Google Scholar] [CrossRef] [PubMed]
- Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; Deligeorgis, G.; Prodromakis, T. Integration of Nanoscale Memristor Synapses in Neuromorphic Computing Architectures. Nanotechnology 2013, 24, 384010. [Google Scholar] [CrossRef] [Green Version]
- Meijer, G.I. Who Wins the Nonvolatile Memory Race? Science 2008, 319, 1625–1626. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, G.; McAlpine, M.C.; Lu, W.; Lieber, C.M. Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches. Nano Lett. 2008, 8, 386–391. [Google Scholar] [CrossRef]
- Lu, W.; Lieber, C.M. Nanoelectronics from the Bottom Up. Nat. Mater. 2007, 6, 841–850. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, Z.; Xie, C.; Yan, F.; Dai, J.; Lau, S.P.; Chan, H.L.W.; Hao, J. Ferroelectric-Driven Performance Enhancement of Graphene Field-Effect Transistors Based on Vertical Tunneling Heterostructures. Adv. Mater. 2016, 28, 10048–10054. [Google Scholar] [CrossRef]
- Ederer, C.; Spaldin, N.A. Influence of Strain and Oxygen Vacancies on the Magnetoelectric Properties of Multiferroic Bismuth Ferrite. Phys. Rev. B 2005, 71, 224103. [Google Scholar] [CrossRef] [Green Version]
- Waser, R.; Aono, M. Nanoionics-Based Resistive Switching Memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Sawa, A. Resistive Switching in Transition Metal Oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories—Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Lyapunov, N.; Zheng, X.D.; Yang, K.; Liu, H.M.; Zhou, K.; Cai, S.H.; Ho, T.L.; Suen, C.H.; Yang, M.; Zhao, J.; et al. A Bifunctional Memristor Enables Multiple Neuromorphic Computing Applications. Adv. Elect. Mater. 2022, 2101235. [Google Scholar] [CrossRef]
- Lyapunov, N.; Suen, C.H.; Wong, C.M.; Tang, X.; Ho, Z.L.; Zhou, K.; Chen, X.X.; Liu, H.M.; Zhou, X.; Dai, J.Y. Ultralow Switching Voltage and Power Consumption of GeS2 Thin Film Resistive Switching Memory. J. Adv. Dielect. 2021, 11, 2150004. [Google Scholar] [CrossRef]
- Jiang, X.; Wei, M.; Chan, C.H.; Wang, Y.; Lai, R.; Wang, J.; Dai, J.; Qiu, X. Effect of Deposition Temperature on Ultra-Low Voltage Resistive Switching Behavior of Fe-Doped SrTiO3 Films. Appl. Phys. Lett. 2020, 116, 102101. [Google Scholar] [CrossRef]
- Chai, J.; Tong, S.; Li, C.; Manzano, C.; Li, B.; Liu, Y.; Lin, M.; Wong, L.; Cheng, J.; Wu, J.; et al. MoS2/Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness. Adv. Mater. 2020, 32, 2002704. [Google Scholar] [CrossRef]
- Nili, H.; Walia, S.; Balendhran, S.; Strukov, D.B.; Bhaskaran, M.; Sriram, S. Nanoscale Resistive Switching in Amorphous Perovskite Oxide (a-SrTiO3) Memristors. Adv. Funct. Mater. 2014, 24, 6741–6750. [Google Scholar] [CrossRef]
- Menke, T.; Meuffels, P.; Dittmann, R.; Szot, K.; Waser, R. Separation of Bulk and Interface Contributions to Electroforming and Resistive Switching Behavior of Epitaxial Fe-Doped SrTiO3. J. Appl. Phys. 2009, 105, 066104. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Choi, B.J.; Lee, M.H.; Kim, G.H.; Song, S.J.; Seok, J.Y.; Yoon, J.H.; Han, S.; Hwang, C.S. A Detailed Understanding of the Electronic Bipolar Resistance Switching Behavior in Pt/TiO2/Pt Structure. Nanotechnology 2011, 22, 254010. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Lee, J.S.; Chang, S.H.; Yoo, H.K.; Kang, B.S.; Kahng, B.; Lee, M.-J.; Kim, C.J.; Noh, T.W. Interface-Modified Random Circuit Breaker Network Model Applicable to Both Bipolar and Unipolar Resistance Switching. Appl. Phys. Lett. 2011, 98, 033502. [Google Scholar] [CrossRef]
- Sun, X.; Li, G.; Chen, L.; Shi, Z.; Zhang, W. Bipolar Resistance Switching Characteristics with Opposite Polarity of Au/SrTiO3/Ti Memory Cells. Nanoscale Res. Lett. 2011, 6, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nili, H.; Ahmed, T.; Walia, S.; Ramanathan, R.; Kandjani, A.E.; Rubanov, S.; Kim, J.; Kavehei, O.; Bansal, V.; Bhaskaran, M.; et al. Microstructure and Dynamics of Vacancy-Induced Nanofilamentary Switching Network in Donor Doped SrTiO3−x Memristors. Nanotechnology 2016, 27, 505210. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Gao, Z.; Ni, K. Multilevel Data Storage Memory Based on Polycrystalline SrTiO3 Ultrathin Film. RSC Adv. 2017, 7, 49753–49758. [Google Scholar] [CrossRef] [Green Version]
- Kinjo, R.; Kawayama, I.; Murakami, H.; Tonouchi, M. Thickness Dependence of Dielectric Characteristics of SrTiO3 Thin Films on MgAl2O4 Substrates. AMPC 2013, 3, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xie, L.; Kim, J.; Stern, A.; Wang, H.; Zhang, K.; Yan, X.; Li, L.; Liu, H.; Zhao, G.; et al. Discovery of a Magnetic Conductive Interface in PbZr0.2Ti0.8O3/SrTiO3 Heterostructures. Nat. Commun. 2018, 9, 685. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wang, H.; Chen, Y.-Y.; Day, T.; Snyder, G.J. Thermoelectric Properties of P-Type Polycrystalline SnSe Doped with Ag. J. Mater. Chem. A 2014, 2, 11171–11176. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Tang, W.; Kang, Z.; Liao, Q.; Hong, M.; Du, J.; Zhang, X.; Yu, H.; Si, H.; Zhang, Z.; et al. Direct Charge Trapping Multilevel Memory with Graphdiyne/MoS2 Van Der Waals Heterostructure. Adv. Sci. 2021, 8, 2101417. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D. Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J.Y.; et al. Polycrystalline SnSe with a Thermoelectric Figure of Merit Greater than the Single Crystal. Nat. Mater. 2021, 20, 1378–1384. [Google Scholar] [CrossRef]
- Suen, C.H.; Shi, D.; Su, Y.; Zhang, Z.; Chan, C.H.; Tang, X.; Li, Y.; Lam, K.H.; Chen, X.; Huang, B.L.; et al. Enhanced Thermoelectric Properties of SnSe Thin Films Grown by Pulsed Laser Glancing-Angle Deposition. J. Mater. 2017, 3, 293–298. [Google Scholar] [CrossRef]
- Chen, X.; Suen, C.-H.; Yau, H.-M.; Zhou, F.; Chai, Y.; Tang, X.; Zhou, X.; Onofrio, N.; Dai, J.-Y. A Dual Mode Electronic Synapse Based on Layered SnSe Films Fabricated by Pulsed Laser Deposition. Nanoscale Adv. 2020, 2, 1152–1160. [Google Scholar] [CrossRef]
- Ni, M.C.; Guo, S.M.; Tian, H.F.; Zhao, Y.G.; Li, J.Q. Resistive Switching Effect in SrTiO3−δ/Nb-Doped SrTiO3 Heterojunction. Appl. Phys. Lett. 2007, 91, 183502. [Google Scholar] [CrossRef]
- Szot, K.; Dittmann, R.; Speier, W.; Waser, R. Nanoscale Resistive Switching in SrTiO3 Thin Films. Phys. Stat. Sol. (RRL) 2007, 1, R86–R88. [Google Scholar] [CrossRef]
- Oligschlaeger, R.; Waser, R.; Meyer, R.; Karthäuser, S.; Dittmann, R. Resistive Switching and Data Reliability of Epitaxial (Ba,Sr)TiO3 Thin Films. Appl. Phys. Lett. 2006, 88, 042901. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-Functional Theory and Strong Interactions: Orbital Ordering in Mott-Hubbard Insulators. Phys. Rev. B 1995, 52, R5467–R5470. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.J.; Watson, G.W. A DFT+U Description of Oxygen Vacancies at the TiO2 Rutile (110) Surface. Surf. Sci. 2007, 601, 5034–5041. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Heyden, A.; Bell, A.T.; Keil, F.J. Efficient Methods for Finding Transition States in Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method. J. Chem. Phys. 2005, 123, 224101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, P.; Wang, J.; Zhong, X. Investigation of Multilevel Data Memory Using Filament and Polarization Control. RSC Adv. 2016, 6, 81789–81793. [Google Scholar] [CrossRef]
- Huang, C.-H.; Huang, J.-S.; Lin, S.-M.; Chang, W.-Y.; He, J.-H.; Chueh, Y.-L. ZnO1– x Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application. ACS Nano 2012, 6, 8407–8414. [Google Scholar] [CrossRef]
- Saadi, M.; Gonon, P.; Vallée, C.; Mannequin, C.; Grampeix, H.; Jalaguier, E.; Jomni, F.; Bsiesy, A. On the Mechanisms of Cation Injection in Conducting Bridge Memories: The Case of HfO2 in Contact with Noble Metal Anodes (Au, Cu, Ag). J. Appl. Phys. 2016, 119, 114501. [Google Scholar] [CrossRef]
- Tseng, Y.-T.; Chen, I.-C.; Chang, T.-C.; Huang, J.C.; Shih, C.-C.; Zheng, H.-X.; Chen, W.-C.; Wang, M.-H.; Huang, W.-C.; Chen, M.-C.; et al. Enhanced Electrical Behavior from the Galvanic Effect in Ag-Cu Alloy Electrode Conductive Bridging Resistive Switching Memory. Appl. Phys. Lett. 2018, 113, 053501. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Ma, Z.; Chen, K.; Zhang, X.; Huang, X.; Oda, S. Characteristics of Multilevel Storage and Switching Dynamics in Resistive Switching Cell of Al2O3/HfO2/Al2O3 Sandwich Structure. J. Phys. D Appl. Phys. 2018, 51, 025102. [Google Scholar] [CrossRef]
- Akbari, M.; Kim, M.-K.; Kim, D.; Lee, J.-S. Reproducible and Reliable Resistive Switching Behaviors of AlOX/HfOX Bilayer Structures with Al Electrode by Atomic Layer Deposition. RSC Adv. 2017, 7, 16704–16708. [Google Scholar] [CrossRef] [Green Version]
- Giovinazzo, C.; Sandrini, J.; Shahrabi, E.; Celik, O.T.; Leblebici, Y.; Ricciardi, C. Analog Control of Retainable Resistance Multistates in HfO2 Resistive-Switching Random Access Memories (ReRAMs). ACS Appl. Electron. Mater. 2019, 1, 900–909. [Google Scholar] [CrossRef]
- Lin, S.-M.; Tseng, J.-Y.; Su, T.-Y.; Shih, Y.-C.; Huang, J.-S.; Huang, C.-H.; Lin, S.-J.; Chueh, Y.-L. Tunable Multilevel Storage of Complementary Resistive Switching on Single-Step Formation of ZnO/ZnWOx Bilayer Structure via Interfacial Engineering. ACS Appl. Mater. Interfaces 2014, 6, 17686–17693. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, C.-Y.; Tsai, T.-L.; Lin, C.-A.; Tseng, T.-Y. Switching Mechanism of Double Forming Process Phenomenon in ZrOx/HfOy Bilayer Resistive Switching Memory Structure with Large Endurance. Appl. Phys. Lett. 2014, 104, 062901. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.-L.; Chang, H.-Y.; Lou, J.J.-C.; Tseng, T.-Y. A High Performance Transparent Resistive Switching Memory Made from ZrO2/AlON Bilayer Structure. Appl. Phys. Lett. 2016, 108, 153505. [Google Scholar] [CrossRef]
Device | Crystalline STO Film | Top Electrode | SET Voltage | RESET Voltage | Resistance Ratio | Resistance State | Ref. |
---|---|---|---|---|---|---|---|
Fe:STO/Nb:STO | Yes | Pt | ~2.5 V | ~−2.5 V | 60 | 2 | [18] |
STO/SRO | Yes | Pt | ~2 V | ~−2 V | ~100 | 2 | [32] |
STO/SRO | Yes | - | >−4 V | >−4 V | ~10,000 | 2 | [33] |
Ba:STO/SRO | Yes | Pt | >−3 V | >4 V | ~3 | 2 | [34] |
STO/Pt | Yes | Ag | ~1 V | ~−3 V | ~100,000 | 4 | [23] |
SnSe/STO/Pt | Yes | Ag | <1 V | <−1 V | ~250 | 8 | * |
SnSe/STO/Pt | Yes | Cu | ~1 V | ~−1 V | ~100 | 6 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.-L.; Ding, K.; Lyapunov, N.; Suen, C.-H.; Wong, L.-W.; Zhao, J.; Yang, M.; Zhou, X.; Dai, J.-Y. Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device. Nanomaterials 2022, 12, 2128. https://doi.org/10.3390/nano12132128
Ho T-L, Ding K, Lyapunov N, Suen C-H, Wong L-W, Zhao J, Yang M, Zhou X, Dai J-Y. Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device. Nanomaterials. 2022; 12(13):2128. https://doi.org/10.3390/nano12132128
Chicago/Turabian StyleHo, Tsz-Lung, Keda Ding, Nikolay Lyapunov, Chun-Hung Suen, Lok-Wing Wong, Jiong Zhao, Ming Yang, Xiaoyuan Zhou, and Ji-Yan Dai. 2022. "Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device" Nanomaterials 12, no. 13: 2128. https://doi.org/10.3390/nano12132128
APA StyleHo, T. -L., Ding, K., Lyapunov, N., Suen, C. -H., Wong, L. -W., Zhao, J., Yang, M., Zhou, X., & Dai, J. -Y. (2022). Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device. Nanomaterials, 12(13), 2128. https://doi.org/10.3390/nano12132128