Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Indiveri, G.; Liu, S.C. Memory and information processing in neuromorphic systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef]
- Nawrocki, R.A.; Voyles, R.M.; Shaheen, S.E. A mini review of neuromorphic architectures and implementations. IEEE Trans. Electron Devices 2019, 66, 4722–4726. [Google Scholar] [CrossRef]
- Kim, K.H.; Gaba, S.; Wheeler, D.; Cruz-Albrecht, J.M.; Hussain, T.; Srinivasa, N.; Lu, W. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2012, 12, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Martins, R.; Barquinha, P.; Pereira, L.; Correia, N.; Gonçalves, G.; Ferreira, I.; Fortunato, E. Selective floating gate non-volatile paper memory transistor. Phys. Status Solidi Rapid Res. Lett. 2009, 3, 308–310. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.; Yang, J.J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO2/TaOx/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Kim, S. Synaptic characteristics from homogeneous resistive switching in Pt/Al2O3/TiN stack. Nanomaterials 2020, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Chand, U.; Mahata, C.; Nebben, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2022, 96, 94–102. [Google Scholar] [CrossRef]
- Carlos, E.; Branquinho, R.; Martins, R.; Kiazadeh, A.; Fortunato, E. Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. Interfaces 2021, 33, 2004328. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Abbas, Y.; Jeon, Y.R.; Sokolov, A.S.; Ku, B.; Choi, C. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 2018, 29, 415204. [Google Scholar] [CrossRef]
- Ismail, M.; Abbas, H.; Mahata, C.; Choi, C.; Kim, S. Optimizing the thickness of Ta2O5 interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO2 switching layer for multilevel data storage. J. Mater. Sci. Technol. 2022, 106, 98–107. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Ohno, T.; Samukawa, S. Film-nanostructure-controlled inerasable-to-erasable switching transition in ZnO-based transparent memristor devices: Sputtering-pressure dependency. ACS. Appl. Electron. Mater. 2019, 1, 2184–2189. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Han, J.; Liu, L.; Ye, C.; Zhou, Y.; Xiong, W.; Liu, Y.; He, G. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment. J. Mater. Sci. Technol. 2020, 49, 1–6. [Google Scholar] [CrossRef]
- Syu, Y.E.; Chang, T.C.; Tsai, T.M.; Chang, G.W.; Chang, K.C.; Tai, Y.H.; Tsai, M.-J.; Wang, Y.-L.; Sze, S.M. Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 2012, 100, 022904. [Google Scholar] [CrossRef]
- Park, J.; Park, E.; Kim, S.; Yu, H.Y. Nitrogen-induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system. ACS Appl. Mater. Interfaces 2019, 11, 32178–32185. [Google Scholar] [CrossRef]
- Hong, S.M.; Kim, H.D.; Yun, M.J.; Park, J.H.; Jeon, D.S.; Kim, T.G. Improved resistive switching properties by nitrogen doping in tungsten oxide thin films. Thin Solid Films 2015, 583, 81–85. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Liu, Y.; Wang, H.; Zou, Z.; Ma, H.; Wu, X.; Xiong, R. Improved Performance of NbOx Resistive Switching Memory by In-Situ N Doping. Nanomaterials 2022, 12, 1029. [Google Scholar] [CrossRef]
- Xie, H.; Liu, Q.; Li, Y.; Lv, H.; Wang, M.; Liu, X.; Sun, H.; Yang, X.; Long, S.; Liu, S.; et al. Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device. Semicond. Sci. Technol. 2012, 27, 125008. [Google Scholar] [CrossRef]
- Wei, X.; Huang, H.; Ye, C.; Wei, W.; Zhou, H.; Chen, Y.; Zhang, R.; Zhang, L.; Xia, Q. Exploring the role of nitrogen incorporation in ZrO2 resistive switching film for enhancing the device performance. J. Alloy. Compd. 2019, 775, 1301–1306. [Google Scholar] [CrossRef]
- Yang, M.; Kamiya, K.; Shirakawa, H.; Magyari-Kope, B.; Nishi, Y.; Shiraishi, K. Role of nitrogen incorporation into Al2O3-based resistive random-access memory. Appl. Phys. Express 2014, 7, 074202. [Google Scholar] [CrossRef]
- Umezawa, N.; Shiraishi, K.; Ohno, T.; Watanabe, H.; Chikyow, T.; Torii, K.; Yamabe, K.; Yamada, K.; Kitajima, H.; Arikado, T. First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics. Appl. Phys. Lett. 2005, 86, 143507. [Google Scholar] [CrossRef]
- Syu, Y.E.; Zhang, R.; Chang, T.C.; Tsai, T.M.; Chang, K.C.; Lou, J.C.; Sze, S.M.; Young, T.-F.; Chen, J.-H.; Chen, M.-C.; et al. Endurance Improvement Technology With Nitrogen Implanted in the Interface of WSiOx Resistance Switching Device. IEEE Electron Device Lett. 2013, 34, 864–866. [Google Scholar] [CrossRef]
- Misha, S.H.; Tamanna, N.; Woo, J.; Lee, S.; Song, J.; Park, J.; Lim, S.; Hwang, H. Effect of nitrogen doping on variability of TaOx-RRAM for low-power 3-bit MLC applications. ECS Solid State Lett. 2015, 4, P25. [Google Scholar] [CrossRef]
- Bersuker, G.; Gilmer, D.C.; Veksler, D.; Kirsch, P.; Vandelli, L.; Padovani, A.; Larcher, L.; McKenna, K.; Shluger, A.; Iglesias, V.; et al. Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 2011, 110, 124518. [Google Scholar] [CrossRef]
- Padovani, A.; Larcher, L.; Pirrotta, O.; Vandelli, L.; Bersuker, G. Microscopic modeling of HfOx RRAM operations: From forming to switching. IEEE Trans. Electron Devices 2015, 62, 1998–2006. [Google Scholar] [CrossRef]
- Rosa, J.; Kiazadeh, A.; Santos, L.; Deuermeier, J.; Martins, R.; Gomes, H.L.; Fortunato, E. Memristors using solution-based IGZO nanoparticles. ACS Omega 2017, 2, 8366–8372. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, H.; Park, H.S.; Kang, M.S.; Shin, K.Y.; Lee, S.S.; Park, J.H. Reliable multistate data storage with low power consumption by selective oxidation of pyramid-structured resistive memory. ACS Appl. Mater. Interfaces 2017, 9, 38643–38650. [Google Scholar] [CrossRef]
- Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Furber, S. Large-scale neuromorphic computing systems. J. Neural Eng. 2016, 13, 051001. [Google Scholar] [CrossRef] [PubMed]
Device | Doping | On/Off Ratio | Vset (V) | Retention (s) | MNIST | Ref |
---|---|---|---|---|---|---|
Pt/NbOx/Pt | Undoped | ~10 | 1.3–1.9 | 4 × 103 | N.A. | [20] |
N–doped | ~103 | 0.4–1.3 | 6 × 104 | N.A. | ||
Ti/WOx/Pt | Undoped | ~10 | N.A. | 102 | N.A. | [19] |
N–doped | ~102 | N.A. | 104 | N.A. | ||
Ti/TiOx/Pt | Undoped | - | Not uniform | 103 | 21.1% | [18] |
N–doped | - | uniform | 105 | 64.4% |
Vset (V) | |||
---|---|---|---|
Device | Μ | σ | σ∕μ |
Undoped | 0.72 | 0.12 | 17.2% |
N–doped | 0.62 | 0.059 | 9.4% |
Device | Cycle-to-Cycle Variability (LRS, HRS) | Retention | Device-to-Device Variability (LRS, HRS) | Vset Variability | Pulse Endurance | LTP, LTD Variability |
---|---|---|---|---|---|---|
Undoped | (27.8%, 23.7%) | ~104 s | (35%, 60.7%) | 17.2%- | degradation | 4.9% |
N–doped | (15.7%, 13.2%) | ~104 s | (8.7%, 48.3%) | 9.4% | ~105 | 13.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, J.; Kim, S. Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping. Nanomaterials 2022, 12, 3334. https://doi.org/10.3390/nano12193334
Kim D, Kim J, Kim S. Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping. Nanomaterials. 2022; 12(19):3334. https://doi.org/10.3390/nano12193334
Chicago/Turabian StyleKim, Doohyung, Jihyung Kim, and Sungjun Kim. 2022. "Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping" Nanomaterials 12, no. 19: 3334. https://doi.org/10.3390/nano12193334
APA StyleKim, D., Kim, J., & Kim, S. (2022). Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping. Nanomaterials, 12(19), 3334. https://doi.org/10.3390/nano12193334