Cu2+-Ion-Substitution-Driven Microstructure and Microwave Dielectric Properties of Mg1−xCuxAl2O4 Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Deng, J.Y.; Li, M.J.; Sun, D.; Guo, L.X. A MIMO Dielectric Resonator Antenna with Improved Isolation for 5G Mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 747–751. [Google Scholar] [CrossRef]
- Choudhary, P.; Kumar, R.; Gupta, N. Dielectric Material Selection of Microstrip Patch Antenna for Wireless Communication Applications Using Ashby’s Approach. Int. J. Microw. Wirel. Technol. 2015, 7, 579–587. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Liu, D. Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications. IEEE Trans. Antennas Propag. 2009, 57, 2830–2841. [Google Scholar] [CrossRef]
- Lai, Y.; Tang, X.; Huang, X.; Zhang, H.; Liang, X.; Li, J.; Su, H. Phase Composition, Crystal Structure and Microwave Dielectric Properties of Mg2−xCuxSiO4 Ceramics. J. Eur. Ceram. Soc. 2018, 38, 1508–1516. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.J.; Chen, Y.H.; Li, Y.; Ling, Z.Y. Phase Evolution and Microwave Dielectric Properties of SrTiO3 Added ZnAl2O4–Zn2SiO4–SiO2 Ceramics. Ceram. Int. 2020, 46, 7050–7054. [Google Scholar] [CrossRef]
- Surendran, K.P.; Bijumon, P.V.; Mohanan, P.; Sebastian, M.T. (1−x)MgAl2O4−xTiO2 Dielectrics for Microwave and Millimeter Wave Applications. Appl. Phys. A Mater. Sci. Process. 2005, 81, 823–826. [Google Scholar] [CrossRef]
- Yu, J.; Shen, C.; Qiu, T. Effect of Microwave Sintering on the Microstructure and Dielectric Properties of 0.92MgAl2O4–0.08(Ca0.8Sr0.2)TiO3 Ceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 2737–2741. [Google Scholar] [CrossRef]
- Nong, L.; Cao, X.; Li, C.; Liu, L.; Fang, L.; Khaliq, J. Influence of Cation Order on Crystal Structure and Microwave Dielectric Properties in xLi4/3Ti5/3O4-(1−x)Mg2TiO4 (0.6 ≤ x ≤ 0.9) Spinel Solid Solutions. J. Eur. Ceram. Soc. 2021, 41, 7683–7688. [Google Scholar] [CrossRef]
- Li, H.; Tang, B.; Li, Y.; Qing, Z. Effects of Mg2.05SiO4.05 Addition on Phase Structure and Microwave Properties of MgTiO3-CaTiO3 Ceramic System. Mater. Lett. 2015, 145, 30–33. [Google Scholar] [CrossRef]
- Jia, X.; Xu, Y.; Zhao, P.; Li, J.; Li, W. Structural Dependence of Microwave Dielectric Properties in Ilmenite-Type Mg(Ti1−xNbx)O3 Solid Solutions by Rietveld Refinement and Raman Spectra. Ceram. Int. 2021, 47, 4820–4830. [Google Scholar] [CrossRef]
- Liao, Q.; Li, L.; Ding, X. Phase Constitution, Structure Analysis and Microwave Dielectric Properties of Zn 0.5Ti1−xZrxNbO4 Ceramics. Solid State Sci. 2012, 14, 1385–1391. [Google Scholar] [CrossRef]
- Bruschini, E.; Speziale, S.; Bosi, F.; Andreozzi, G.B. Fe–Mg Substitution in Aluminate Spinels: Effects on Elastic Properties Investigated by Brillouin Scattering. Phys. Chem. Miner. 2018, 45, 759–772. [Google Scholar] [CrossRef]
- Millard, R.L.; Peterson, R.C.; Hunter, B.K. Temperature Dependence of Cation Disorder in MgAl2O4 Spinel Using 27Al and 17O Magic-Angle Spinning NMR. Am. Mineral. 1992, 77, 44–52. [Google Scholar]
- Kan, A.; Okazaki, H.; Takahashi, S.; Ogawa, H. Microwave Dielectric Properties and Cation Distribution of Spinel-Structured Mg0.4Al2.4−xGaxO4 Ceramics with Cation Defect. Jpn. J. Appl. Phys. 2018, 57, 11UE03. [Google Scholar] [CrossRef]
- Takahashi, S.; Kan, A.; Ogawa, H. Microwave Dielectric Properties and Crystal Structures of Spinel-Structured MgAl2O4 Ceramics Synthesized by a Molten-Salt Method. J. Eur. Ceram. Soc. 2017, 37, 1001–1006. [Google Scholar] [CrossRef]
- Qin, T.; Zhong, C.; Shang, Y.; Cao, L.; Wang, M.; Tang, B.; Zhang, S. Effects of LiF on Crystal Structure, Cation Distributions and Microwave Dielectric Properties of MgAl2O4. J. Alloys Compd. 2021, 886, 161278. [Google Scholar] [CrossRef]
- Huang, C.L.; Tai, C.Y.; Huang, C.Y.; Chien, Y.H. Low-Loss Microwave Dielectrics in the Spinel-Structured (Mg1−xNix)Al2O4 Solid Solutions. J. Am. Ceram. Soc. 2010, 93, 1999–2003. [Google Scholar] [CrossRef]
- Tsai, W.C.; Liou, Y.H.; Liou, Y.C. Microwave Dielectric Properties of MgAl2O4-CoAl2O4 Spinel Compounds Prepared by Reaction-Sintering Process. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177, 1133–1137. [Google Scholar] [CrossRef]
- Takahashi, S.; Ogawa, H.; Kan, A. Electronic States and Cation Distributions of MgAl2O4 and Mg0.4Al2.4O4 Microwave Dielectric Ceramics. J. Eur. Ceram. Soc. 2018, 38, 593–598. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Lai, Y.; Zeng, Y.; Han, J.; Liang, X.; Zhong, X.; Liu, M.; Duo, B.; Su, H. Structure Dependence of Microwave Dielectric Properties in Zn2−xSiO4−x-xCuO Ceramics. J. Eur. Ceram. Soc. 2021, 41, 2602–2609. [Google Scholar] [CrossRef]
- Le Nestour, A.; Gaudon, M.; Villeneuve, G.; Andriessen, R.; Demourgues, A. Steric and Electronic Effects Relating to the Cu2+ Jahn-Teller Distortion in Zn1−xCuxAl2O4 Spinels. Inorg. Chem. 2007, 46, 2645–2658. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Kim, J.M.; Jo, H.W.; Kim, E.S. Effect of Electronegativity on Microwave Dielectric Properties of MgTi1−x(A1/3Sb2/3)xO3 (A = Mg2+, Zn2+) Ceramics. Int. J. Appl. Ceram. Technol. 2019, 16, 2053–2059. [Google Scholar] [CrossRef]
- Lai, Y.; Su, H.; Wang, G.; Tang, X. Low-Temperature Sintering of Microwave Ceramics with High Qf Values through LiF Addition. J. Am. Ceram. Soc. 2019, 102, 1893–1903. [Google Scholar] [CrossRef]
- Zheng, C.W.; Fan, X.C.; Chen, X.M. Analysis of Infrared Reflection Spectra of (Mg1−xZnx)Al2O4 Microwave Dielectric Ceramics. J. Am. Ceram. Soc. 2008, 91, 490–493. [Google Scholar] [CrossRef]
- Wu, S.; Xue, J.; Fan, Y. Spinel Mg(Al, Ga)2O4 Solid Solution as High-Performance Microwave Dielectric Ceramics. J. Am. Ceram. Soc. 2014, 97, 3555–3560. [Google Scholar] [CrossRef]
- Qin, T.; Zhong, C.; Qin, Y.; Tang, B.; Zhang, S. The Structure Evolution and Microwave Dielectric Properties of MgAl2−x(Mg0.5Ti0.5)xO4 Solid Solutions. Ceram. Int. 2020, 46, 19046–19051. [Google Scholar] [CrossRef]
- Takahashi, S.; Kan, A.; Ogawa, H. Effects of Cation Distribution on Microwave Dielectric Properties of Mg1−xZnxAl2O4 Ceramics. Mater. Chem. Phys. 2017, 200, 257–263. [Google Scholar] [CrossRef]
- Huang, C.L.; Chien, Y.H.; Tai, C.Y.; Huang, C.Y. High-Q Microwave Dielectrics in the (Mg1−xZnx)Al2O4 (x = 0–0.1) System. J. Alloys Compd. 2011, 509, 2010–2012. [Google Scholar] [CrossRef]
- Takahashi, S.; Kan, A.; Ogawa, H. Microwave Dielectric Properties and Cation Distributions of Zn1−3xAl2+2xO4 Ceramics with Defect Structures. J. Eur. Ceram. Soc. 2017, 37, 3059–3064. [Google Scholar] [CrossRef]
- Takahashi, S.; Kan, A.; Ogawa, H. Microwave Dielectric Properties and Crystal Structures of Mg0.7Al2.2O4 and Mg0.4Al2.4O4 Ceramics with Defect Structures. J. Am. Ceram. Soc. 2017, 100, 3497–3504. [Google Scholar] [CrossRef]
- Fu, P.; Xu, Y.; Shi, H.; Zhang, B.; Ruan, X.; Lu, W. The Effect of Annealing Process on the Optical and Microwave Dielectric Properties of Transparent MgAl2O4 Ceramics by Spark Plasma Sintering. Opt. Mater. (Amst.) 2014, 36, 1232–1237. [Google Scholar] [CrossRef]
- Fregola, R.A.; Bosi, F.; Skogby, H.; Hålenius, U. Cation Ordering over Short-Range and Long-Range Scales in the MgAl2O4-CuAl2O4 Series. Am. Mineral. 2012, 97, 1821–1827. [Google Scholar] [CrossRef]
- Khanna, A.; Saini, A.; Chen, B.; González, F.; Pesquera, C. Structural Study of Bismuth Borosilicate, Aluminoborate and Aluminoborosilicate Glasses by 11B and 27Al MAS NMR Spectroscopy and Thermal Analysis. J. Non. Cryst. Solids 2013, 373–374, 34–41. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Smith, M.E. Chapter 5: 27Al NMR. In Pergamon Materials Series; Elsevier: Amsterdam, The Netherlands, 2002; pp. 271–330. [Google Scholar]
- Harindranath, K.; Anusree Viswanath, K.; Vinod Chandran, C.; Bräuniger, T.; Madhu, P.K.; Ajithkumar, T.G.; Joy, P.A. Evidence for the Co-Existence of Distorted Tetrahedral and Trigonal Bipyramidal Aluminium Sites in SrAl12O19 from 27Al NMR Studies. Solid State Commun. 2010, 150, 262–266. [Google Scholar] [CrossRef]
- Pellerin, N.; Dodane-Thiriet, C.; Montouillout, V.; Beauvy, M.; Massiot, D. Cation Sublattice Disorder Induced by Swift Heavy Ions in MgAl2O4 and ZnAl2O4 Spinels: 27Al Solid-State NMR Study. J. Phys. Chem. B 2007, 111, 12707–12714. [Google Scholar] [CrossRef]
- Takahashi, S.; Imai, Y.; Kan, A.; Hotta, Y.; Ogawa, H. Microwave Dielectric Properties of Composites Consisting of MgAl2O4 Filler Synthesized by Molten-Salt Method and Isotactic Polypropylene Polymer Matrix. Jpn. J. Appl. Phys. 2015, 54, 10NE02. [Google Scholar] [CrossRef]
- Blaakmeer, E.S.; Rosciano, F.; Van Eck, E.R.H. Lithium Doping of MgAl2O4 and ZnAl2O4 Investigated by High-Resolution Solid State NMR. J. Phys. Chem. C 2015, 119, 7565–7577. [Google Scholar] [CrossRef]
- Tamura, H. Microwave Dielectric Losses Caused by Lattice Defects. J. Eur. Ceram. Soc. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
- Santhosh Kumar, T.; Pamu, D. Effect of V2O5 on Microwave Dielectric Properties of Non-Stoichiometric MgTiO3 Ceramics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2015, 194, 86–93. [Google Scholar] [CrossRef]
- Sayyadi-Shahraki, A.; Taheri-Nassaj, E.; Hassanzadeh-Tabrizi, S.A.; Barzegar-Bafrooei, H. A New Temperature Stable Microwave Dielectric Ceramic with Low-Sintering Temperature in Li2TiO3-Li2Zn3Ti 4O12 System. J. Alloys Compd. 2014, 597, 161–166. [Google Scholar] [CrossRef]
- Wang, F.; Lai, Y.; Zeng, Y.; Yang, F.; Li, B.; Yang, X.; Su, H.; Han, J.; Zhong, X. Enhanced Microwave Dielectric Properties in Mg2Al4Si5O18 Through Cu2+ Substitution. Eur. J. Inorg. Chem. 2021, 2021, 2464–2470. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric Polarizabilities of Ions in Oxides and Fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, B.; Fang, Z.; Yang, H.; Xiong, Z.; Xue, L.; Zhang, S. Structural Evolution and Microwave Dielectric Properties of a Novel Li3Mg2−x/3Nb1−2x/3TixO6 System with a Rock Salt Structure. Inorg. Chem. Front. 2018, 5, 3113–3125. [Google Scholar] [CrossRef]
- Xiao, E.C.; Shi, F.; Fu, G.; Ren, Q.; Dou, G.; Lei, W.; Qi, Z.M. Effects of BaCu(B2O5) Additives on the Crystal Structures and Dielectric Properties of CaMgGeO4 ceramics for LTCC Applications. CrystEngComm 2020, 22, 4768–4777. [Google Scholar] [CrossRef]
- Levine, B.F. D-Electron Effects on Bond Susceptibilities and Ionicities. Phys. Rev. B 1973, 7, 2591–2600. [Google Scholar] [CrossRef]
- Phillips, J.C.; Van Vechten, J.A. Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures. Phys. Rev. Lett. 1969, 22, 705–708. [Google Scholar] [CrossRef]
- Levine, B.F. Bond Susceptibilities and Ionicities in Complex Crystal Structures. J. Chem. Phys. 1973, 59, 1463–1486. [Google Scholar] [CrossRef]
- Wu, Z.; Meng, Q. Semiempirical Study on the Valences of Cu and Bond Covalency in Y1−xCaxBa2Cu3O6+y. Phys. Rev. B-Condens. Matter Mater. Phys. 1998, 58, 958–962. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Yang, H.; Li, E. Usage of P-V-L Bond Theory in Studying the Structural/Property Regulation of Microwave Dielectric Ceramics: A Review. Inorg. Chem. Front. 2020, 7, 4711–4753. [Google Scholar] [CrossRef]
- Xiao, M.; Lou, J.; Zhou, Z.; Gu, Q.; Wei, Y.; Zhang, P. Crystal Structure and Microwave Dielectric Properties of Ta5+ Substituted MgZrNb2O8 Ceramics. Ceram. Int. 2017, 43, 15567–15572. [Google Scholar] [CrossRef]
- Xia, W.; Li, L.; Ning, P.; Liao, Q. Relationship Between Bond Ionicity, Lattice Energy, and Microwave Dielectric Properties of Zn(Ta1−xNbx)2O6 Ceramics. J. Am. Ceram. Soc. 2012, 95, 2587–2592. [Google Scholar] [CrossRef]
- Van Vechten, J.A. Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant. Phys. Rev. (Ser. I) 1969, 182, 891–905. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Wang, X. The Relationship Between Bond Ionicity, Lattice Energy, Coefficient of Thermal Expansion and Microwave Dielectric Properties of Nd(Nb1−xSbx)O4 Ceramics. Dalton Trans. 2015, 44, 10932–10938. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Li, L. The Correlations Among Bond Ionicity, Lattice Energy and Microwave Dielectric Properties of (Nd1−xLax)NbO4 Ceramics. Phys. Chem. Chem. Phys. 2015, 17, 16692–16698. [Google Scholar] [CrossRef]
- Li, C.; Ding, S.; Zhang, Y.; Zhu, H.; Song, T. Effects of Ni2+ Substitution on the Crystal Structure, Bond Valence, and Microwave Dielectric Properties of BaAl2–2xNi2xSi2O8–x Ceramics. J. Eur. Ceram. Soc. 2020, 41, 2610–2616. [Google Scholar] [CrossRef]
- Sanderson, R.T. Electronegativity and Bond Energy. J. Am. Chem. Soc. 1983, 105, 2259–2261. [Google Scholar] [CrossRef]
- Xiao, M.; Wei, Y.; Zhang, P. The Correlations between Complex Chemical Bond Theory and Microwave Dielectric Properties of Ca2MgSi2O7 Ceramics. J. Electron. Mater. 2019, 48, 1652–1659. [Google Scholar] [CrossRef]
- Xiao, M.; Sun, H.; Zhou, Z.; Zhang, P. Bond Ionicity, Lattice Energy, Bond Energy, and Microwave Dielectric Properties of Ca1−xSrxWO4 Ceramics. Ceram. Int. 2018, 44, 20686–20691. [Google Scholar] [CrossRef]
- Sanderson, R. Multiple and Single Bond Energies in Inorganic Molecules. J. Inorg. Nucl. Chem. 1968, 30, 375–393. [Google Scholar] [CrossRef]
- Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
Sample | τf (ppm/°C) | Qf (GHz) | εr | Ts (°C) | Milling Time (h) | Preparation Method | Ref. |
---|---|---|---|---|---|---|---|
Mg0.96Cu0.04Al2O4 | −59 | 72,800 | 8.28 | 1550 | 4 | solid state reaction | This work |
MgAl2O4 | N/A | 82,000 | 7.9 | 1550–1700 | 24 | solid state reaction | [26] |
ZnAl2O4 | N/A | 106,000 | 8.6 | 1550–1700 | 24 | solid state reaction | [26] |
Mg(Al0.4Ga0.6)2O4 | −16 | 107,000 | 8.87 | 1285–1535 | 6 | solid state reaction | [27] |
MgAl1.94(Mg0.5Ti0.5)0.06O4 | −61.36 | 98,000 | 9.1 | 1425 | 6 | solid state reaction | [28] |
Mg0.25Zn0.75Al2O4 | −60 | 222,600 | 8.40 | 1600 | 24 | solid state reaction | [29] |
0.75MgAl2O4-0.25TiO2 | −12 | 105,400 | 11.04 | 1400–1460 | 24 | solid state reaction | [6] |
(Mg0.75Ni0.25)Al2O4 | −53.5 | 130,000 | 8.21 | 1480–1600 | 24 | solid state reaction | [17] |
(Mg0.95Zn0.05)Al2O4 | −64~−70 | 156,000 | 8.1 | 1480–1600 | 12 | solid state reaction | [30] |
Zn0.4Al2.4O4 | −66 | 202,468 | 8.2 | 1500–1600 | 24 | molten salt method | [31] |
MgAl2O4 | −62.4 | 201,690 | 7.8 | 1600 | 24 | molten salt method | [15] |
Mg0.7Al2.2O4 | −60 | 201,111 | 7.7 | 1600 | 24 | molten salt method | [32] |
Mg0.4Al2.4O4 | −60 | 232,301 | 7.5 | 1600 | 24 | molten salt method | [32] |
Mg0.8Co0.2Al2O4 | −60 | 49,300 | 8.46 | 1475–1500 | 12 | reaction-sintering process | [18] |
Transparent MgAl2O4 | N/A | 52,640 | 8.20 | 1350 | N/A | spark plasma sintering | [33] |
x = 0 | x = 0.04 | x = 0.08 | x = 0.12 | x = 0.16 | x = 0.20 | |
---|---|---|---|---|---|---|
a = b = c (Å) | 8.0849 | 8.0864 | 8.0869 | 8.0838 | 8.0817 | 8.0828 |
V (Å3) | 528.467 | 528.775 | 528.857 | 528.259 | 527.841 | 528.060 |
Rp (%) | 6.35 | 6.51 | 5.41 | 4.76 | 4.35 | 3.99 |
Rwp (%) | 8.54 | 8.88 | 7.19 | 6.10 | 5.63 | 5.17 |
Rexp (%) | 4.72 | 4.60 | 4.29 | 3.94 | 3.70 | 3.56 |
χ2 | 3.27 | 3.73 | 2.81 | 2.40 | 2.32 | 2.10 |
ρm (g∙cm−3) | 3.379 | 3.454 | 3.465 | 3.491 | 3.484 | 3.503 |
ρt (g∙cm−3) | 3.577 | 3.614 | 3.652 | 3.696 | 3.738 | 3.776 |
ρr (%) | 94.49 | 95.59 | 94.90 | 94.49 | 93.22 | 92.79 |
x Value | x = 0 | x = 0.04 | x = 0.08 | x = 0.12 | x = 0.16 | x = 0.2 |
---|---|---|---|---|---|---|
P | 0.055 | 0.044 | 0.051 | 0.055 | 0.068 | 0.072 |
εr | 8.14 | 8.28 | 8.23 | 8.22 | 8.26 | 8.29 |
εrc | 8.75 | 8.76 | 8.80 | 8.83 | 9.04 | 9.12 |
εtheo | 7.79 | 7.92 | 8.05 | 8.23 | 8.40 | 8.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Yin, M.; Li, B.; Yang, X.; Gong, W.; Yang, F.; Zhang, Q.; Wang, F.; Wu, C.; Li, H. Cu2+-Ion-Substitution-Driven Microstructure and Microwave Dielectric Properties of Mg1−xCuxAl2O4 Ceramics. Nanomaterials 2022, 12, 3332. https://doi.org/10.3390/nano12193332
Lai Y, Yin M, Li B, Yang X, Gong W, Yang F, Zhang Q, Wang F, Wu C, Li H. Cu2+-Ion-Substitution-Driven Microstructure and Microwave Dielectric Properties of Mg1−xCuxAl2O4 Ceramics. Nanomaterials. 2022; 12(19):3332. https://doi.org/10.3390/nano12193332
Chicago/Turabian StyleLai, Yuanming, Ming Yin, Baoyang Li, Xizhi Yang, Weiping Gong, Fan Yang, Qin Zhang, Fanshuo Wang, Chongsheng Wu, and Haijian Li. 2022. "Cu2+-Ion-Substitution-Driven Microstructure and Microwave Dielectric Properties of Mg1−xCuxAl2O4 Ceramics" Nanomaterials 12, no. 19: 3332. https://doi.org/10.3390/nano12193332
APA StyleLai, Y., Yin, M., Li, B., Yang, X., Gong, W., Yang, F., Zhang, Q., Wang, F., Wu, C., & Li, H. (2022). Cu2+-Ion-Substitution-Driven Microstructure and Microwave Dielectric Properties of Mg1−xCuxAl2O4 Ceramics. Nanomaterials, 12(19), 3332. https://doi.org/10.3390/nano12193332