Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review
Abstract
:1. Introduction
2. Synthesis of Te NTs
2.1. The Synthetic Strategies of Te NTs
2.1.1. Liquid-Phase Methods
2.1.2. Gas-Phase Methods
2.2. The Growth Mechanisms of Te NTs
2.2.1. The SIG/NDRG Mechanism
2.2.2. The HBT/SG Mechanism
3. Property Control
3.1. Electrical Properties
3.2. Optical Properties
3.3. Magnetoresistance Properties
4. Applications
4.1. Sensing and Decontamination
4.2. Energy Storage
4.3. Thermoelectrics
4.4. Templating for Catalysts
5. Current Challenges and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, V.; Sen, S.; Sharma, M.; Muthe, K.P.; Jagannath; Gaur, N.K.; Gupta, S.K. Tellurium nano-structure based NO gas sensor. J. Nanosci. Nanotechnol. 2009, 9, 5278–5282. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Wang, S.; Gu, W.; Zhuang, J.; Jin, H.; Zhang, W.; Zhang, T.; Wang, J. Ultrasensitive room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor. Sens. Actuators B Chem. 2014, 196, 321–327. [Google Scholar] [CrossRef]
- Choi, I.J.; Kim, B.J.; Lee, S.H.; Jeong, B.J.; Nasir, T.; Cho, Y.S.; Kim, N.; Lee, J.-H.; Yu, H.K.; Choi, J.-Y. Fabrication of a room-temperature NO2 gas sensor using morphology controlled CVD-grown tellurium nanostructures. Sens. Actuators B Chem. 2021, 333, 128891. [Google Scholar] [CrossRef]
- Xia, Y.; Li, W.; Cobley, C.M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E.C.; Brown, P.K. Gold Nanocages: From Synthesis to Theranostic Applications. Acc. Chem. Res. 2011, 44, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Acc. Chem. Res. 2013, 46, 1783–1794. [Google Scholar] [CrossRef]
- He, Z.; Yang, Y.; Liu, J.-W.; Yu, S.-H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732–2753. [Google Scholar] [CrossRef]
- Mayers, B.; Xia, Y. Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds. Adv. Mater. 2002, 14, 279–282. [Google Scholar] [CrossRef]
- Liu, J.-W.; Xu, J.; Hu, W.; Yang, J.-L.; Yu, S.-H. Systematic Synthesis of Tellurium Nanostructures and Their Optical Properties: From Nanoparticles to Nanorods, Nanowires and Nanotubes. ChemNanoMat 2016, 2, 167–170. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, H. PEG-Mediated Hydrothermal Growth of Single-Crystal Tellurium Nanotubes. Cryst. Growth Des. 2008, 8, 4415–4419. [Google Scholar] [CrossRef]
- Mohanty, P.; Kang, T.; Kim, B.; Park, J. Synthesis of Single Crystalline Tellurium Nanotubes with Triangular and Hexagonal Cross Sections. J. Phys. Chem. B 2006, 110, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Suh, H.; Jung, H.; Myung, N.; Hong, K. Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates. Bull.-Korean Chem. Soc. 2014, 35, 3227–3231. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Yu, S.-H.; Zhu, J. Amino Acids Controlled Growth of Shuttle-Like Scrolled Tellurium Nanotubes and Nanowires with Sharp Tips. Chem. Mater. 2005, 17, 2785–2788. [Google Scholar] [CrossRef]
- Ji, G.; Guo, L.; Chang, X.; Liu, Y.; Pan, L.J.; Shi, Y.; Zheng, Y. Microwave-Assisted Synthesis of Shuttle-shaped Single-Crystalline Te Nanotubes Decorated with Spherical Particles. Curr. Nanosci. 2011, 7, 254–259. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Yang, Y.; Hu, Z.; Peng, S.; Liang, J.; Qian, Y. Shape-Controlled Synthesis and Growth Mechanism of One-Dimensional Nanostructures of Trigonal Tellurium. ChemInform 2004, 35, 1748–1752. [Google Scholar] [CrossRef]
- Zhong, B.N.; Fei, G.T.; Fu, W.B.; Gong, X.X.; Xu, S.H.; Gao, X.D.; De Zhang, L. Controlled solvothermal synthesis of single-crystal tellurium nanowires, nanotubes and trifold structures and their photoelectrical properties. CrystEngComm 2017, 19, 2813–2820. [Google Scholar] [CrossRef]
- Deng, Y.; Cui, C.-W.; Zhang, N.-L.; Ji, T.-H.; Yang, Q.-L.; Guo, L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Commun. 2006, 138, 111–113. [Google Scholar] [CrossRef]
- Guascito, M.R.; Chirizzi, D.; Filippo, E.; Milano, F.; Tepore, A. Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for a Fuel Cell Anode/Cathode Working at a Neutral pH. Catalysts 2019, 9, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, F.; Wu, L.; Zhang, Y.; Huang, W.; Tang, Y.; Hu, L.; Huang, P.; Zhang, X.; Zhang, H. Van der Waals Integration of Bismuth Quantum Dots–Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasma-Enhanced Optoelectronic Applications. Small 2019, 15, 1903233. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Li, J.; Zhong, G.; Yuan, J.; Zhan, H.; Tang, Y.; Wen, Z. Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 2022, 13, 663. [Google Scholar] [CrossRef]
- Mayers, B.; Xia, Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 2002, 12, 1875–1881. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, S.; Zhang, Y.; Teng, R.; Huang, T.; Chen, C.; Lu, G. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052. [Google Scholar] [CrossRef]
- Wei, G.; Deng, Y.; Lin, Y.-H.; Nan, C.W. Solvothermal synthesis of porous tellurium nanotubes. Chem. Phys. Lett. 2003, 372, 590–594. [Google Scholar] [CrossRef]
- Rheem, Y.; Chang, C.H.; Hangarter, C.M.; Park, D.-Y.; Lee, K.-H.; Jeong, Y.-S.; Myung, N.V. Synthesis of tellurium nanotubes by galvanic displacement. Electrochim. Acta 2010, 55, 2472–2476. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Ma, X.; Que, D. Transformation mechanism of Te particles into Te nanotubes and nanowires during solvothermal process. J. Cryst. Growth 2006, 289, 568–573. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, W.; Ye, X.; Fu, S.; Xie, Y. 1D Tellurium Nanostructures: Photothermally Assisted Morphology-Controlled Synthesis and Applications in Preparing Functional Nanoscale Materials. Adv. Funct. Mater. 2007, 17, 486–492. [Google Scholar] [CrossRef]
- Song, J.-M.; Lin, Y.; Zhan, Y.-J.; Tian, Y.; Liu, G.; Yu, S.-H. Superlong high-quality tellurium nanotubes: Synthesis, characterization, and optical property. Cryst. Growth Des. 2008, 8, 1902–1908. [Google Scholar] [CrossRef]
- She, G.; Shi, W.; Zhang, X.; Wong, T.; Cai, Y.; Wang, N. Template-Free Electrodeposition of One-Dimensional Nanostructures of Tellurium. Cryst. Growth Des. 2009, 9, 663–666. [Google Scholar] [CrossRef]
- Zhang, G.; Su, X.; Chen, X.; Wang, D.; Qin, J. Tellurium Nanotubes Synthesized with Microwave-Assisted Monosaccharide Reduction Method. J. Nanosci. Nanotechnol. 2007, 7, 2500–2505. [Google Scholar] [CrossRef]
- Kapoor, S.; Ahmad, H.; Julien, C.M.; Islam, S.S. Synthesis of highly reproducible CdTe nanotubes on anodized alumina template and confinement study by photoluminescence and Raman spectroscopy. J. Alloys Compd. 2019, 809, 151765. [Google Scholar] [CrossRef]
- She, G.; Cai, T.; Mu, L.; Shi, W. Template-free electrochemical synthesis of Cd/CdTe core/shell nanowires and CdTe nanotubes. CrystEngComm 2020, 22, 4301–4305. [Google Scholar] [CrossRef]
- Shashwati, S.; Umananda, M.B.; Vivek, K.; Muthe, K.P.; Shovit, B.; Yakhmi, J.V.; Gupta, S.K. Synthesis of Tellurium Nanostructures by Physical Vapor Deposition and Their Growth Mechanism. Cryst. Growth Des. 2007, 8, 238–242. [Google Scholar] [CrossRef]
- Métraux, C.; Grobety, B. Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J. Mater. Res. 2004, 19, 2159–2164. [Google Scholar] [CrossRef]
- Li, X.-L.; Cao, G.-H.; Feng, C.-M.; Li, Y.-D. Synthesis and magnetoresistance measurement of tellurium microtubes. J. Mater. Chem. 2004, 14, 244–247. [Google Scholar] [CrossRef]
- An, D.; Wang, J.; Zhang, J.; Zhai, X.; Kang, Z.; Fan, W.; Yan, J.; Liu, Y.; Lu, L.; Jia, C.-L.; et al. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. Energy Environ. Sci. 2021, 14, 5469–5479. [Google Scholar] [CrossRef]
- Van Overbeek, C.; Peters, J.L.; van Rossum, S.A.P.; Smits, M.; van Huis, M.A.; Vanmaekelbergh, D. Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals. J. Phys. Chem. C 2018, 122, 12464–12473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, H.; Liang, J.; Rao, G.; Li, J.; Liu, G.; Du, Z.; Fan, H.M.; Luo, J. Controlled Synthesis of Tellurium Nanostructures from Nanotubes to Nanorods and Nanowires and Their Template Applications. J. Phys. Chem. C 2011, 115, 6375–6380. [Google Scholar] [CrossRef]
- Xi, G.; Peng, Y.; Yu, W.; Qian, Y. Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes. Cryst. Growth Des. 2005, 5, 325–328. [Google Scholar] [CrossRef]
- Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. Controlled Hydrothermal Synthesis of Thin Single-Crystal Tellurium Nanobelts and Nanotubes. Adv. Mater. 2002, 14, 1658–1662. [Google Scholar] [CrossRef]
- Xu, W.; Song, J.; Sun, L.; Yang, J.; Hu, W.; Ji, Z.; Yu, S.-H. Structural, Electrical, and Photoconductive Properties of Individual Single-Crystalline Tellurium Nanotubes Synthesized by a Chemical Route: Doping Effects on Electrical Structure. Small 2008, 4, 888–893. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wen, D. Preparation by Hydrothermal Techniques in a Tungstosilicate Acid Solution System and Optical Properties of Tellurium Nanotubes. Eur. J. Inorg. Chem. 2009, 2009, 3291–3297. [Google Scholar] [CrossRef]
- Xu, W.; Lu, Y.; Lei, W.; Sui, F.; Ma, R.; Qi, R.; Huang, R. FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector. Micromachines 2022, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Zavabeti, A.; Aukarasereenont, P.; Tuohey, H.; Syed, N.; Jannat, A.; Elbourne, A.; Messalea, K.A.; Zhang, B.Y.; Murdoch, B.J.; Partridge, J.G.; et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Electron. 2021, 4, 277–283. [Google Scholar] [CrossRef]
- Wang, J.; Fang, M.; Fei, G.T.; Liu, M.; Shang, G.L.; De Zhang, L. Te hexagonal nanotubes: Formation and optical properties. J. Mater. Sci. 2016, 51, 7170–7178. [Google Scholar] [CrossRef]
- Mangelsen, S.; Bensch, W. HfTe2: Enhancing Magnetoresistance Properties by Improvement of the Crystal Growth Method. Inorg. Chem. 2020, 59, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Her, Y.C.; Huang, S.L. Growth mechanism of Te nanotubes by a direct vapor phase process and their room-temperature CO and NO2 sensing properties. Nanotechnology 2013, 24, 215603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Li, C.; Gao, X.; Bai, T.; Chen, C.; Huang, H.; Liang, C.; Shi, Z.; Feng, S. Porous Pt Nanotubes with High Methanol Oxidation Electrocatalytic Activity Based on Original Bamboo-Shaped Te Nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 16147–16153. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.W.; Ha, G. Direct synthesis of Te/Bi2Te3 nanocomposite powders by a polyol process. Res. Chem. Intermed. 2010, 36, 835–841. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Cang, J.; Roy, P.; Chang, H.-T.; Huang, Y.-C.; Huang, C.-C. Synthesis and Antimicrobial Activity of Gold/Silver–Tellurium Nanostructures. ACS Appl. Mater. Interfaces 2014, 6, 8305–8312. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y.; Huang, Z.N.; Ge, Y.; Wu, L.; Dong, Z.; Dai, X.; et al. Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. Small 2019, 15, 1900902. [Google Scholar] [CrossRef]
- Jianqiang, H.; Liu, A.; Jin, H.; Dekun, m.; Yin, D.; Ling, P.; Wang, S.; Lin, Z.; Wang, J. A Versatile Strategy for Shish-Kebab-like Multi-Heterostructured Chalcogenides and Enhanced Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2015, 137, 11004–11010. [Google Scholar] [CrossRef]
- Wei, T.-Y.; Chang, H.-Y.; Tseng, Y.-T.; Huang, C.-C. Synthesis of tellurium nanotubes via a green approach for detection and removal of mercury ions. RSC Adv. 2013, 3, 13983–13989. [Google Scholar] [CrossRef]
- Yin, H.; Yu, X.-X.; Yu, Y.-W.; Cao, M.-L.; Zhao, H.; Li, C.; Zhu, M.-Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870–876. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y. Flexible Tellurium-Based Electrode for High-Performance Lithium-Tellurium Battery. Nanomaterials 2021, 11, 2903. [Google Scholar] [CrossRef]
- Rowe, D.M. Recent developments in thermoelectric materials. Appl. Energy 1986, 24, 139–162. [Google Scholar] [CrossRef]
- Jung, Y.; Agarwal, R.; Yang, C.-Y.; Agarwal, R. Chalcogenide phase-change memory nanotubes for lower writing current operation. Nanotechnology 2011, 22, 254012. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, S.; Huang, T.; Zhang, Y.; Teng, R.; Lu, G. Rational design, high-yield synthesis, and low thermal conductivity of Te/Bi2Te3 core/shell heterostructure nanotube composites. J. Alloys Compd. 2014, 617, 247–252. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, R.; Zhang, Y. Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. Nanomaterials 2022, 12, 2151. https://doi.org/10.3390/nano12132151
Liu C, Wang R, Zhang Y. Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. Nanomaterials. 2022; 12(13):2151. https://doi.org/10.3390/nano12132151
Chicago/Turabian StyleLiu, Cailing, Ruibin Wang, and Ye Zhang. 2022. "Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review" Nanomaterials 12, no. 13: 2151. https://doi.org/10.3390/nano12132151
APA StyleLiu, C., Wang, R., & Zhang, Y. (2022). Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. Nanomaterials, 12(13), 2151. https://doi.org/10.3390/nano12132151