The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Synthesis of Ag TNPs
2.3. Detection of Thiram Based on Ag TNPs
2.4. Detection of Thiram Residues in Wheat
2.5. Characterization
2.6. Models and Methods of DDA
3. Results and Discussion
3.1. Thiram-Initiated Aggregating of Ag TNPs
3.2. The Influence of Assembly Forms on LSPR Effect of the Ag TNPs
3.3. Using the Aggregation of Ag TNPs for Thiram Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cereser, C.; Boget, S.; Parvaz, P.; Revol, A. Thiram-induced cytotoxicity is accompanied by a rapid and drastic oxidation of reduced glutathione with consecutive lipid peroxidation and cell death. Toxicology 2001, 163, 153–162. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, C.; Zhang, Z. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale 2013, 5, 3773–3779. [Google Scholar] [PubMed]
- Alizadeh, N.; Kalhor, H.; Karimi, A. Determination of thiram residues in canola seeds, water and soil samples using solid-phase microextraction with polypyrrole film followed by ion mobility spectrometer. Int. J. Environ. Anal. Chem. 2015, 95, 57–66. [Google Scholar]
- Walia, S.; Sharma, R.K.; Parmar, B.S. Isolation and simultaneous LC analysis of thiram and its less toxic transformation product in DS formulation. Bull. Environ. Contam. Toxicol. 2009, 83, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Rastegarzadeh, S.; Abdali, S. Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid. Talanta 2013, 104, 22–26. [Google Scholar] [CrossRef]
- Giannoulis, K.M.; Giokas, D.L.; Tsogas, G.Z.; Vlessidis, A.G. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Talanta 2014, 119, 276–283. [Google Scholar] [CrossRef]
- Rohit, J.V.; Kailasa, S.K. Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. J. Nanopart. Res. 2014, 16, 2585. [Google Scholar] [CrossRef]
- Kong, L.; Huang, M.; Chen, J.; Lin, M. In situ detection of thiram in fruits and vegetables by colorimetry/surface-enhanced Raman spectroscopy. Laser Phys. 2020, 30, 065602. [Google Scholar] [CrossRef]
- Hoang, V.T.; Dinh, N.X.; Trang, N.L.N.; Khi, N.T.; Quy, N.V.; Tuan, P.A.; Tri, D.Q.; Thang, L.H.; Huy, T.Q.; Le, A.T. Functionalized silver nanoparticles-based efficient colorimetric platform: Effects of surface capping agents on the sensing response of thiram pesticide in environmental water samples. Mater. Res. Bull. 2021, 139, 111278. [Google Scholar] [CrossRef]
- Anh, N.T.; Dinh, N.X.; Van, T.H.; Thuan, T.H.; Tung, L.M.; Le, V.P.; Tri, D.Q.; Le, A.T. Cost-effective tween 80-capped copper nanoparticles for ultrasensitive colorimetric detection of thiram pesticide in environmental water samples. J. Nanomater. 2021, 2021, 5513401. [Google Scholar] [CrossRef]
- Liu, K.; Jin, Y.; Wu, Y.; Liang, J. Simple and rapid colorimetric visualization of tetramethylthiuram disulfide (thiram) sensing based on anti-aggregation of gold nanoparticles. Food Chem. 2022, 384, 132223. [Google Scholar] [CrossRef] [PubMed]
- Detsri, E.; Seeharaj, P.; Sriwong, C. A sensitive and selective colorimetric sensor for reduced glutathione detection based on silver triangular nanoplates conjugated with gallic acid. Colloids Surf. A 2018, 541, 36–42. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Q.; Jiao, Y.; Jia, R.; Chen, Z. Colorimetric aggregation based cadmium (II) assay by using triangular silver nanoplates functionalized with 1-amino-2-naphthol-4-sulfonate. Microchim. Acta 2018, 185, 6. [Google Scholar] [CrossRef] [PubMed]
- Furletov, A.; Apyari, V.; Garshev, A.; Dmitrienko, S.; Zolotov, Y. Fast and sensitive determination of bioflavonoids using a new analytical system based on label-free silver triangular nanoplates. Sensors 2022, 22, 843. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Volkov, P.A.; Dmitrienko, S.G. Silver triangular nanoplates as a colorimetric probe for sensing thiols: Characterization in the interaction with structurally related thiols of different functionality. Microchem. J. 2019, 147, 979–984. [Google Scholar] [CrossRef]
- Xu, S.; Li, H.; Guo, M.; Wang, L.; Li, X.; Xue, Q. Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst 2021, 146, 4858–4864. [Google Scholar] [CrossRef]
- Zhan, P.; Wen, T.; Wang, Z.; He, Y.; Shi, J.; Wang, T.; Liu, X.; Lu, G.; Ding, B. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 2018, 57, 2846–2850. [Google Scholar] [CrossRef]
- Chien, M.H.; Nien, L.W.; Chao, B.K.; Li, J.H.; Hsueh, C.H. Effects of the rotation angle on surface plasmon coupling of nanoprisms. Nanoscale 2016, 8, 3660–3670. [Google Scholar] [CrossRef]
- Mayevsky, A.D.; Funston, A.M. Control of electric field localization by three-dimensional bowtie nanoantennae. J. Phys. Chem. C 2018, 122, 18012–18020. [Google Scholar] [CrossRef]
- Kotkowiak, M.; Grześkiewicz, B.; Robak, E.; Wolarz, E. Interaction between nanoprisms with different coupling strength. J. Phys. Chem. C 2015, 119, 6195–6203. [Google Scholar] [CrossRef]
- Kim, J.; Song, X.; Ji, F.; Luo, B.; Ice, N.F.; Liu, Q.; Zhang, Q.; Chen, Q. Polymorphic assembly from beveled gold triangular nanoprisms. Nano lett. 2017, 17, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qi, H.; Chen, Q.; Wang, S.; Ruan, L. Localized surface plasmon resonance of nanotriangle dimers at different relative positions. J. Quant. Spectrosc. Radiat. Transf. 2017, 199, 45–51. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.; Li, J.; Zhao, J. Misalign-dependent double plasmon modes “switch” of gold triangular nanoplate dimers. J. Appl. Phys. 2015, 117, 063102. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhu, J.; Li, J.J.; Zhao, J. Focus and enlarge the enhancement region of local electric field by overlapping Ag triangular nanoplates. Eur. Phys. J. Appl. Phys. 2016, 73, 10501. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhu, J.; Li, J.J.; Zhao, J.W. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Appl. Mater. Interfaces 2017, 9, 17387–17398. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Flatau, P.J.; Draine, B.T. Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt. Express 2012, 20, 1247–1252. [Google Scholar] [CrossRef]
- Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275. [Google Scholar] [CrossRef] [Green Version]
- Winsemius, P.; Van Kampen, F.F.; Lengkeek, H.P.; van Went, C.G. Temperature dependence of the optical properties of Au, Ag and Cu. J. Phys. F 1976, 6, 1583. [Google Scholar] [CrossRef]
- Sanchez-Cortes, S.; Vasina, M.; Francioso, O.; García-Ramos, J.V. Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vib. Spectrosc. 1998, 17, 133–144. [Google Scholar] [CrossRef]
- Xue, C.; Li, Z.; Mirkin, C.A. Large-scale assembly of single-crystal silver nanoprism monolayers. Small 2005, 1, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Chatterjee, H.; Ghosh, S.K. Manipulating the confinement of electromagnetic field in size-specific gold nanoparticles dimers and trimers. RSC Adv. 2019, 9, 42145–42154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyamekye, C.K.A.; Weibel, S.C.; Smith, E.A. Directional Raman scattering spectra of metal–sulfur bonds at smooth gold and silver substrates. J. Raman Spectrosc. 2021, 52, 1246–1255. [Google Scholar] [CrossRef]
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
Wheat | 0.3 | 0.315 | 105 | 0.26 |
0.35 | 0.348 | 99.6 | 0.20 | |
0.4 | 0.407 | 102 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Ren, H.; Jiang, X.; Jia, G.; Pan, Z.; Liu, Y. The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues. Nanomaterials 2022, 12, 2152. https://doi.org/10.3390/nano12132152
Zhang C, Ren H, Jiang X, Jia G, Pan Z, Liu Y. The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues. Nanomaterials. 2022; 12(13):2152. https://doi.org/10.3390/nano12132152
Chicago/Turabian StyleZhang, Chunhong, Hao Ren, Xiangkui Jiang, Guangfeng Jia, Zhigang Pan, and Yongchun Liu. 2022. "The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues" Nanomaterials 12, no. 13: 2152. https://doi.org/10.3390/nano12132152
APA StyleZhang, C., Ren, H., Jiang, X., Jia, G., Pan, Z., & Liu, Y. (2022). The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues. Nanomaterials, 12(13), 2152. https://doi.org/10.3390/nano12132152