DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer
Abstract
:1. Introduction
2. Computational Details
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loss, D.; DiVincenzo, D.P. Quantum Computation with Quantum Dots. Phys. Rev. A 1998, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- DiVincenzo, D.P. The Physical Implementation of Quantum Computation. Fortschr. Phys. 2000, 48, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.H.L.; Buizert, C.; Tielrooij, K.J.; Vink, I.T.; Nowack, K.C.; Meunier, T.; Kouwenhoven, L.P.; Vandersypen, L.M.K. Driven Coherent Oscillations of a Single Electron Spin in a Quantum Dot. Nature 2006, 442, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Muhonen, J.T.; Dehollain, J.P.; Laucht, A.; Hudson, F.E.; Kalra, R.; Sekiguchi, T.; Itoh, K.M.; Jamieson, D.N.; McCallum, J.C.; Dzurak, A.S.; et al. Storing Quantum Information for 30 Seconds in a Nanoelectronic Device. Nat. Nanotech. 2014, 9, 986–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; et al. A CMOS Silicon Spin Qubit. Nat. Commun. 2016, 7, 13575. [Google Scholar] [CrossRef]
- Kloeffel, C.; Loss, D. Prospects for Spin-Based Quantum Computing in Quantum Dots. Annu. Rev. Condens. Matter Phys. 2013, 4, 51–81. [Google Scholar] [CrossRef] [Green Version]
- Higginbotham, A.P.; Larsen, T.W.; Yao, J.; Yan, H.; Lieber, C.M.; Marcus, C.M.; Kuemmeth, F. Hole Spin Coherence in a Ge/Si Heterostructure Nanowire. Nano Lett. 2014, 14, 3582–3586. [Google Scholar] [CrossRef] [Green Version]
- Marcellina, E.; Hamilton, A.R.; Winkler, R.; Culcer, D. Spin-Orbit Interactions in Inversion-Asymmetric Two-Dimensional Hole Systems: A Variational Analysis. Phys. Rev. B 2017, 95, 075305. [Google Scholar] [CrossRef] [Green Version]
- Watzinger, H. Ge Hut Wires—From Growth to Hole Spin Resonance. Ph.D. Thesis, Faculty of the Graduate School of the Institute of Science and Technology Austria, Klosterneuburg, Austria, 2018. [Google Scholar] [CrossRef]
- Scappucci, G.; Kloeffel, C.; Zwanenburg, F.A.; Loss, D.; Myronov, M.; Zhang, J.-J.; De Franceschi, S.; Katsaros, G.; Veldhorst, M. The Germanium Quantum Information Route. Nat. Rev. Mater. 2021, 6, 926–943. [Google Scholar] [CrossRef]
- Luttinger, J.M.; Kohn, W. Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 1955, 97, 869–883. [Google Scholar] [CrossRef]
- Winkler, R.; Culcer, D.; Papadakis, S.J.; Habib, B.; Shayegan, M. Spin Orientation of Holes in Quantum Wells. Semicond. Sci. Technol. 2008, 23, 114017. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, K.; Hofmann, A.; Jirovec, D.; Prieto, I.; Sammak, A.; Botifoll, M.; Martí-Sánchez, S.; Veldhorst, M.; Arbiol, J.; Scappucci, G.; et al. Enhancement of Proximity-Induced Superconductivity in a Planar Ge Hole Gas. Phys. Rev. Res. 2021, 3, L022005. [Google Scholar] [CrossRef]
- Jirovec, D.; Hofmann, A.; Ballabio, A.; Mutter, P.M.; Tavani, G.; Botifoll, M.; Crippa, A.; Kukucka, J.; Sagi, O.; Martins, F.; et al. A Singlet-Triplet Hole Spin Qubit in Planar Ge. Nat. Mater. 2021, 20, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, L. Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires. Ph.D. Thesis, Faculty of the Graduate School of the Institute of Science and Technology Austria, Klosterneuburg, Austria, 2018. [Google Scholar] [CrossRef]
- Gao, F.; Wang, J.; Watzinger, H.; Hu, H.; Rančić, M.J.; Zhang, J.; Wang, T.; Yao, Y.; Wang, G.; Kukučka, J.; et al. Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin–Orbit Coupling. Adv. Mater. 2020, 32, 1906523. [Google Scholar] [CrossRef] [Green Version]
- Lauhon, L.J.; Gudiksen, M.S.; Wang, D.; Lieber, C.M. Epitaxial Core–Shell and Core–Multishell Nanowire Heterostructures. Nature 2002, 420, 57–61. [Google Scholar] [CrossRef]
- Kodambaka, S.; Tersoff, J.; Reuter, M.C.; Ross, F.M. Germanium Nanowire Growth Below the Eutectic Temperature. Science 2007, 316, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Katsaros, G.; Montalenti, F.; Scopece, D.; Rezaev, R.O.; Mickel, C.; Rellinghaus, B.; Miglio, L.; De Franceschi, S.; Rastelli, A.; et al. Monolithic Growth of Ultrathin Ge Nanowires on Si(001). Phys. Rev. Lett. 2012, 109, 085502. [Google Scholar] [CrossRef] [Green Version]
- Katsaros, G.; Kukučka, J.; Vukušić, L.; Watzinger, H.; Gao, F.; Wang, T.; Zhang, J.-J.; Held, K. Zero Field Splitting of Heavy-Hole States in Quantum Dots. Nano Lett. 2020, 20, 5201–5206. [Google Scholar] [CrossRef]
- Kukucka, J. Implementation of a Hole Spin Qubit in Ge Hut Wires and Dispersive Spin Sensing. Ph.D. Thesis, Faculty of the Graduate School of the Institute of Science and Technology Austria, Klosterneuburg, Austria, 2020. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Aroyo, M.I. (Ed.) International Tables for Crystallography: Space-Group Symmetry, 2nd ed.; International Union of Crystallography: Chester, UK, 2016; Volume A, ISBN 978-0-470-97423-0. [Google Scholar]
- Hom, T.; Kiszenik, W.; Post, B. Accurate Lattice Constants from Multiple Reflection Measurements. II. Lattice Constants of Germanium Silicon, and Diamond. J. Appl. Crystallogr. 1975, 8, 457–458. [Google Scholar] [CrossRef]
- Fan, Q.; Peng, H.; Zhang, W.; Yu, X.; Yun, S. Physical Properties of Group 14 Elements in P2/m Phase. J. Solid State Chem. 2022, 305, 122641. [Google Scholar] [CrossRef]
- Gallego, S.V.; Tasci, E.S.; de la Flor, G.; Perez-Mato, J.M.; Aroyo, M.I. Magnetic Symmetry in the Bilbao Crystallographic Server: A Computer Program to Provide Systematic Absences of Magnetic Neutron Diffraction. J. Appl. Crystallogr. 2012, 45, 1236–1247. [Google Scholar] [CrossRef]
- Perez-Mato, J.M.; Gallego, S.V.; Tasci, E.S.; Elcoro, L.; de la Flor, G.; Aroyo, M.I. Symmetry-Based Computational Tools for Magnetic Crystallography. Annu. Rev. Mater. Res. 2015, 45, 217–248. [Google Scholar] [CrossRef]
- Hanson, R.; Kouwenhoven, L.P.; Petta, J.R.; Tarucha, S.; Vandersypen, L.M.K. Spins in Few-Electron Quantum Dots. Rev. Mod. Phys. 2007, 79, 1217–1265. [Google Scholar] [CrossRef] [Green Version]
- Kouwenhoven, L.P.; Austing, D.G.; Tarucha, S. Few-Electron Quantum Dots. Rep. Prog. Phys. 2001, 64, 701–736. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibisov, A.; Aleshin, M.; Chibisova, M. DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer. Nanomaterials 2022, 12, 2244. https://doi.org/10.3390/nano12132244
Chibisov A, Aleshin M, Chibisova M. DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer. Nanomaterials. 2022; 12(13):2244. https://doi.org/10.3390/nano12132244
Chicago/Turabian StyleChibisov, Andrey, Maxim Aleshin, and Mary Chibisova. 2022. "DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer" Nanomaterials 12, no. 13: 2244. https://doi.org/10.3390/nano12132244
APA StyleChibisov, A., Aleshin, M., & Chibisova, M. (2022). DFT Analysis of Hole Qubits Spin State in Germanium Thin Layer. Nanomaterials, 12(13), 2244. https://doi.org/10.3390/nano12132244