Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbents
2.2.1. Preparation of Biochar
2.2.2. Preparation of Nano Iron Oxide–Modified Biochar
2.3. Characterizations
2.4. Adsorption of RhB
3. Results and Discussion
3.1. Characterizations of the Synthesized Biochars
3.2. Batch Adsorption Studies
3.2.1. Effect of Adsorbent Dosage on Adsorption of RhB
3.2.2. Effect of Contact Time on Adsorption of RhB
3.2.3. Effect of Temperature on Adsorption of RhB
3.3. Kinetic and Isotherm Adsorption
3.3.1. Adsorption Kinetic Models
3.3.2. Adsorption Isotherm Models
3.4. Regeneration and Reusability of CBC-Fe(II)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liu, H.; Gao, W.; Cheng, D.; Tan, F.; Wang, W.; Wang, X.; Qiao, X.; Wong, P.K.; Yao, Y. In situ zinc cyanamide coordination induced highly N-rich graphene for efficient peroxymonosulfate activation. J. Mater. Chem. A 2022, 10, 12016–12025. [Google Scholar] [CrossRef]
- Chen, P.; Dong, N.; Zhang, J.; Wang, W.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Investigation on visible-light photocatalytic performance and mechanism of zinc peroxide for tetracycline degradation and Escherichia coli inactivation. J. Colloid Interface Sci. 2022, 624, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Ge, L.; Chen, P.; Wang, W.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Non-radical activation of CaO2 nanoparticles by MgNCN/MgO composites for efficient remediation of organic and heavy metal-contaminated wastewater. Sep. Purif. Technol. 2022, 285, 120334. [Google Scholar] [CrossRef]
- Dong, N.; Wu, D.; Ge, L.; Wang, W.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Constructing a brand-new advanced oxidation process system composed of MgO2 nanoparticles and MgNCN/MgO nanocomposites for organic pollutant degradation. Environ. Sci. Nano 2022, 9, 335–348. [Google Scholar] [CrossRef]
- Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Haounati, R.; Amaterz, E.; Addi, A.A.; Akbal, F.; Taha, M.L. Experimental and molecular dynamics simulation study on the adsorption of Rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@Mt. J. Mol. Liq. 2020, 309, 113142. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohyd. Polym. 2013, 95, 501–507. [Google Scholar] [CrossRef]
- Hussein, T.K.; Jasim, N.A. A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Mater. Today 2021, 42, 1946–1950. [Google Scholar] [CrossRef]
- Li, S.; Kang, Y. Effect of PO43− on the polymerization of polyferric phosphatic sulfate and its flocculation characteristics for different simulated dye wastewater. Sep. Purif. Technol. 2021, 276, 119373. [Google Scholar] [CrossRef]
- Paździor, K.; Bilińska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2019, 376, 120597. [Google Scholar] [CrossRef]
- Shrestha, D. Efficiency of wood-dust of dalbergia sisoo as low-cost adsorbent for Rhodamine-B dye removal. Nanomaterials 2021, 11, 2217. [Google Scholar] [CrossRef]
- Sun, L.; Mo, Y.; Zhang, L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. Chemosphere 2022, 294, 133801. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, E.J.R.; Mazzeo, D.E.C.; Sommaggio, L.R.D.; Marin-Morales, M.A.; de Andrade, A.R.; Corso, C.R. Azo dyes degradation and mutagenicity evaluation with a combination of microbiological and oxidative discoloration treatments. Ecotox. Environ. Saf. 2019, 183, 109484. [Google Scholar] [CrossRef]
- Nozad, E.; Poursattar Marjani, A.; Mahmoudian, M. A novel and facile semi-IPN system in fabrication of solvent resistant nano-filtration membranes for effective separation of dye contamination in water and organic solvents. Sep. Purif. Technol. 2022, 282, 120121. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Yan, X.; Feng, R.; Zhou, M.; Xue, J. Enhanced adsorption of Rhodamine B by magnetic nitrogen-doped porous carbon prepared from bimetallic ZIFs. Colloid. Surf. A 2019, 575, 10–17. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, X.; Li, J.; Kumar, P.; Liu, B. Selective dye adsorption by zeolitic imidazolate framework-8 loaded UiO-66-NH2. Nanomaterials 2019, 9, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkartehi, M.E.; Mahmoud, R.; Shehata, N.; Farghali, A.; Gamil, S.; Zaher, A. LDH nanocubes synthesized with zeolite templates and their high performance as adsorbents. Nanomaterials 2021, 11, 3315. [Google Scholar] [CrossRef]
- Ain, Q.U.; Rasheed, U.; Yaseen, M.; Zhang, H.; He, R.; Tong, Z. Fabrication of magnetically separable 3-acrylamidopropyltrimethylammonium chloride intercalated bentonite composite for the efficient adsorption of cationic and anionic dyes. Appl. Surf. Sci. 2020, 514, 145929. [Google Scholar] [CrossRef]
- Paton-Carrero, A.; Sanchez, P.; Sánchez-Silva, L.; Romero, A. Graphene-based materials behaviour for dyes adsorption. Mater. Today Commun. 2022, 30, 103033. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Yahyaoui, S.; Hanafy, H.; Seliem, M.K.; Bonilla-Petriciolet, A.; Luiz Dotto, G.; Sellaoui, L.; Li, Q. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling. Chem. Eng. J. 2021, 417, 128116. [Google Scholar] [CrossRef]
- Chabi, N.; Baghdadi, M.; Sani, A.H.; Golzary, A.; Hosseinzadeh, M. Removal of tetracycline with aluminum boride carbide and boehmite particles decorated biochar derived from algae. Bioresour. Technol. 2020, 316, 123950. [Google Scholar] [CrossRef]
- Binda, G.; Spanu, D.; Bettinetti, R.; Magagnin, L.; Pozzi, A.; Dossi, C. Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. Algal Res. 2020, 52, 102103. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.-H.; Chang, J.-S.; Lin, C.-S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, J.; Zhou, Y.; Fu, Q.; Yang, W.; Zhu, X.; Liao, Q. A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells. Int. J. Hydrogen Energ. 2017, 42, 27657–27665. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Yang, W.; Fu, Q.; Sun, K.; Song, Y.-C.; Wei, Z.; Liao, Q.; Zhu, X. Green and facile synthesis of iron oxide nanoparticle-embedded N-doped biocarbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells. Chem. Eng. J. 2020, 385, 123393. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Huang, G.; Xu, C.; Lin, B. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J. Clean. Prod. 2020, 251, 119717. [Google Scholar] [CrossRef]
- Hou, Y.; Huang, G.; Li, J.; Yang, Q.; Huang, S.; Cai, J. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for Rhodamine B removal. J. Anal. Appl. Pyrol. 2019, 143, 104694. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Meenakshi, S. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes. Surf. Interfaces 2021, 23, 100920. [Google Scholar] [CrossRef]
- Qu, J.; Shi, J.; Wang, Y.; Tong, H.; Zhu, Y.; Xu, L.; Wang, Y.; Zhang, B.; Tao, Y.; Dai, X.; et al. Applications of functionalized magnetic biochar in environmental remediation: A review. J. Hazard. Mater. 2022, 434, 128841. [Google Scholar] [CrossRef]
- Geng, J.; Gu, F.; Chang, J. Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(Ⅵ) and Rhodamine B from wastewater. J. Hazard. Mater. 2019, 375, 174–181. [Google Scholar] [CrossRef]
- Lin, C.-R.; Ivanova, O.S.; Edelman, I.S.; Knyazev, Y.V.; Zharkov, S.M.; Petrov, D.A.; Sokolov, A.E.; Svetlitsky, E.S.; Velikanov, D.A.; Solovyov, L.A.; et al. Carbon double coated Fe3O4@C@C nanoparticles: Morphology features, magnetic properties, dye adsorption. Nanomaterials 2022, 12, 376. [Google Scholar] [CrossRef]
- Trinh, B.-S.; Le, P.T.K.; Werner, D.; Phuong, N.H.; Luu, T.L. Rice husk biochars modified with magnetized iron oxides and nano zero valent iron for decolorization of dyeing wastewater. Processes 2019, 7, 660. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sharma, R.; Pant, D.; Malaviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676. [Google Scholar] [CrossRef]
- Lalhmunsiama; Gupta, P.L.; Jung, H.; Tiwari, D.; Kong, S.-H.; Lee, S.-M. Insight into the mechanism of Cd(II) and Pb(II) removal by sustainable magnetic biosorbent precursor to Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 2017, 71, 206–213. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Wang, H.; Song, H. Co-pyrolysis route of chlorella sp. and bauxite tailings to fabricate metal-biochar as persulfate activator. Chem. Eng. J. 2022, 428, 132578. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P.; Khan, M.N. Ultrasound assisted adsorption of reactive dye-145 by biochars from marine Chlorella sp. extracted solid waste pyrolyzed at various temperatures. J. Environ. Chem. Eng. 2020, 8, 104403. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresour. Technol. 2019, 289, 121578. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 2021, 29, 100277. [Google Scholar] [CrossRef]
- Xue, S.; Tu, B.; Li, Z.; Ma, X.; Xu, Y.; Li, M.; Fang, C.; Tao, H. Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments. Colloid. Surf. A 2021, 618, 126489. [Google Scholar] [CrossRef]
- Guimarães, T.; Luciano, V.A.; Silva, M.S.V.; de Carvalho Teixeira, A.P.; da Costa, M.M.; Lopes, R.P. Biochar-iron composites: An efficient material for dyes removal. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100645. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Zhao, L.; Zhou, Z.; Qiu, C.; Li, Q. Adsorption of Rhodamine B from aqueous solution by goat manure biochar: Kinetics, isotherms, and thermodynamic studies. Pol. J. Environ. Stud. 2020, 29, 2721–2730. [Google Scholar] [CrossRef]
- Ye, L.; Wang, R.; Ji, G.; Wu, H.; Qu, H.; Wang, L.; Liu, J. From green tide to biochar: Thermal decomposition kinetics and TG-FTIR study of microalgae from Chaohu Lake. Int. J. Energy Res. 2020, 45, 8083–8090. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Peng, H.; Leng, S.; Li, H.; Qu, W.; Hu, Y.; Li, H.; Jiang, S.; Zhou, W.; et al. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 2021, 291, 120128. [Google Scholar] [CrossRef]
- Fouad, D.E.; Zhang, C.; El-Didamony, H.; Yingnan, L.; Mekuria, T.D.; Shah, A.H. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 2019, 12, 1253–1261. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, C.P.; Zhu, Y.; Wei, W.; Qin, H. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. J. Water Process Eng. 2018, 25, 96–104. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Cruz Silva, R.; Valenzuela, M.A.; Agarwal, V. 4-nitrophenol optical sensing with N doped oxidized carbon dots. J. Hazard. Mater. 2020, 386, 121643. [Google Scholar] [CrossRef]
- Chenakin, S.; Kruse, N. XPS characterization of transition metal oxalates. Appl. Surf. Sci. 2020, 515, 146041. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, D.; Wang, W.; Tan, F.; Ng, T.W.; Chen, J.; Qiao, X.; Wong, P.K. Fabrication of magnetic Fe@ZnO0.6S0.4 nanocomposite for visible-light-driven photocatalytic inactivation of Escherichia coli. Appl. Surf. Sci. 2017, 396, 19–25. [Google Scholar] [CrossRef]
- Chen, D.; He, D.; Lu, J.; Zhong, L.; Liu, F.; Liu, J.; Yu, J.; Wan, G.; He, S.; Luo, Y. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Appl. Catal. B Environ. 2017, 218, 249–259. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Shen, F.; Wu, C.; Gu, S. Kinetics, equilibrium and thermodynamics studies on biosorption of Rhodamine B from aqueous solution by earthworm manure derived biochar. Int. Biodeter. Biodegr. 2017, 120, 104–114. [Google Scholar] [CrossRef]
- Adekola, F.A.; Ayodele, S.B.; Inyinbor, A.A. Activated biochar prepared from plaintain peels: Characterization and Rhodamine B adsorption data set. Chem. Data Collect. 2019, 19, 100170. [Google Scholar] [CrossRef]
- Ajayi, O.A.; Nisar, N.; Ifebajo, A.O.; Oladipo, A.A. High-performance magnetic chicken bone-based biochar for efficient removal of rhodamine-B dye and tetracycline: Competitive sorption analysis. Water Sci. Technol. 2017, 76, 373–385. [Google Scholar]
- Li, X.; Shi, J.; Luo, X. Enhanced adsorption of Rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability. Bioresour. Technol. 2022, 343, 126103. [Google Scholar] [PubMed]
- Ren, Z.; Chen, F.; Wang, B.; Song, Z.; Zhou, Z.; Ren, D. Magnetic biochar from alkali-activated rice straw for removal of Rhodamine B from aqueous solution. Environ. Eng. Res. 2019, 25, 536–544. [Google Scholar]
Sample | SBET (m2/g) | Smicro (m2/g) | Vtotal (cm3/g) | Vmicro (cm3/g) | Daverage (nm) |
---|---|---|---|---|---|
CBC | 338.6 | 33.6 | 0.411 | 0.010 | 4.855 |
CBC-Fe(III) | 350.2 | 99.9 | 0.477 | 0.057 | 5.702 |
CBC-Fe(II) | 527.6 | 169.3 | 0.499 | 0.073 | 3.614 |
Sample | Qe, Experimental (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
K1 (1/min) | Qe, Model (mg/g) | R2 | K2 (g/(mg∙min)) | Qe, Model (mg/g) | R2 | ||
CBC | 153.2 | 0.028 | 151.1 | 0.985 | 0.000154 | 186.3 | 0.992 |
CBC-Fe(III) | 162.4 | 0.044 | 158.5 | 0.993 | 0.000273 | 184.1 | 0.998 |
CBC-Fe(II) | 258.3 | 0.053 | 250.7 | 0.990 | 0.000226 | 284.9 | 0.999 |
Sample | First Linear Segment | Second Linear Segment | Third Linear Segment | |||
---|---|---|---|---|---|---|
Kid (mg/(g∙min1/2)) | R2 | Kid (mg/(g∙min1/2)) | R2 | Kid (mg/(g∙min1/2)) | R2 | |
CBC | 22.339 | 0.995 | 8.965 | 0.999 | 0.074 | 0.905 |
CBC-Fe(III) | 26.962 | 0.998 | 8.783 | 0.994 | 0.348 | 0.994 |
CBC-Fe(II) | 43.337 | 0.996 | 12.831 | 0.981 | 0.224 | 0.998 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | KF [(mg/g)(mg/L)1/n] | n | R2 | |
CBC | 179.7 | 0.0145 | 0.998 | 51.785 | 5.808 | 0.972 |
CBC-Fe(III) | 185.1 | 0.0250 | 0.998 | 69.732 | 7.212 | 0.988 |
CBC-Fe(II) | 289.6 | 0.0343 | 0.992 | 96.384 | 6.144 | 0.982 |
Biochar | Biomass | Qm (mg/g) | References |
---|---|---|---|
biochar | cassava slag | 105.3 | [25] |
BHC-800 | bamboo shoot shell | 85.8 | [26] |
sulfur-doped biochar | tapioca peel waste | 33.1 | [27] |
earthworm manure derived biochar | earthworm manure | 21.6 | [49] |
plantain peel activated biochar | plantain peel | 84.4 | [50] |
magnetic chicken bone-based biochar | chicken bone | 96.5 | [51] |
Fe–N co-modified biochar | coconut shell | 12.4 | [52] |
magnetic biochar (AMBC) | Rice straw | 53.7 | [53] |
CBC-Fe(II) | Chlorella vulgaris | 286.4 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Fan, Z.; Chen, X.; Zhou, X.; Gao, Z.F.; Deng, S.; Wan, S.; Lv, X.; Shi, Y.; Han, W. Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B. Nanomaterials 2022, 12, 2271. https://doi.org/10.3390/nano12132271
Peng Z, Fan Z, Chen X, Zhou X, Gao ZF, Deng S, Wan S, Lv X, Shi Y, Han W. Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B. Nanomaterials. 2022; 12(13):2271. https://doi.org/10.3390/nano12132271
Chicago/Turabian StylePeng, Ziling, Zeyu Fan, Xia Chen, Xian Zhou, Zhuo Fan Gao, Shanshan Deng, Sha Wan, Xingdong Lv, Yan Shi, and Wei Han. 2022. "Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B" Nanomaterials 12, no. 13: 2271. https://doi.org/10.3390/nano12132271
APA StylePeng, Z., Fan, Z., Chen, X., Zhou, X., Gao, Z. F., Deng, S., Wan, S., Lv, X., Shi, Y., & Han, W. (2022). Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B. Nanomaterials, 12(13), 2271. https://doi.org/10.3390/nano12132271