Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nanogels Based on NIPAM-APTAC-AMPS
2.3. Fourier-Transform Infrared Spectroscopy (FT-IR) of Nanogels Based on NIPAM-APTAC-AMPS
2.4. Thermogravimetric Analysis (TGA) of Nanogels Based on NIPAM-APTAC-AMPS
2.5. Determination of Volume Phase Transition Temperatures of Nanogels Based on NIPAM-APTAC-AMPS
2.6. Determination of the Average Hydrodynamic Size and Zeta Potential of Nanogels Based on NIPAM-APTAC-AMPS
2.7. 1H NMR Spectroscopy of Nanogels Based on NIPAM-APTAC-AMPS
2.8. SEM Data of Nanogels Based on NIPAM-APTAC-AMPS
3. Results
3.1. Synthesis and Characterization of Nanogels Based on NIPAM-APTAC-AMPS
3.2. SEM Analysis of the Nanogels
3.3. TGA and DTA Data for NIPAM-APTAC-AMPS Nanogels
3.4. Zeta Potentials (ζ) of NIPAM-APTAC-AMPS Nanogels in Aqueous and Saline Solutions
3.5. The Volume Phase Transition Behavior of Charge-Balanced NIPAM90-APTAC5-AMPS5 Nanogel in Saline Solutions
3.6. The Mean Hydrodynamic Size of Charge-Balanced NIPAM90-APTAC5-AMPS5 Nanogel in Saline Solutions
3.7. The Volume Phase Transition Behavior of NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5 Nanogels in Saline Solutions
3.8. The Mean Hydrodynamic Size of Charge-Imbalanced NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5 Nanogels in Saline Solutions
3.9. Temperature-Variable 1H NMR Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajput, R.; Narkhede, J.; Naik, J.B. Nanogels as nanocarriers for drug delivery: A review. ADMET DMPK 2020, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control Release 2016, 240, 109–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauri, E.; Perale, G.; Rossi, F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS Appl. Nano Mater. 2018, 1, 6525–6541. [Google Scholar] [CrossRef]
- Drozdov, A.D.; Sanporean, C.G.; de Claville Christiansen, J. Modeling the effect of ionic strength on swelling of pH-sensitive macro- and nanogels. Mater. Today Commun. 2016, 6, 92–101. [Google Scholar]
- Mauri, E.; Giannitelli, S.M.; Trombetta, M.; Rainer, A. Synthesis of Nanogels: Current Trends and Future Outlook. Gels 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.A.; Lipson, J.E.G. LCST and UCST Behavior in Polymer Solutions and Blends. Polymer 2012, 53, 536–545. [Google Scholar] [CrossRef]
- Aseyev, V.; Tenhu, H.; Winnik, F.M. Non-ionic thermoresponsive polymers in water. Adv. Polym. Sci. 2011, 242, 29–89. [Google Scholar]
- Zhou, Y.; Wang, S.; Peng, J.; Tan, Y.; Li, C.; Boey, F.Y.C.; Long, Y. Liquid Thermo-Responsive Smart Window Derived from Hydrogel. Joule 2020, 4, 2458–2474. [Google Scholar] [CrossRef]
- Xu, X.; Bizmark, N.; Christie, K.S.S.; Datta, S.S.; Ren, Z.J.; Priestley, R.D. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022, 55, 1894–1909. [Google Scholar] [CrossRef]
- Jain, K.; Vedarajan, R.; Watanabe, M.; Ishikiriyama, M.; Matsumi, N. Tunable LCST Behavior of Poly(N-Isopropylacryl-mide/Ionic Liquid) Copolymers. Polym. Chem. 2015, 6, 6819–6825. [Google Scholar] [CrossRef]
- Saha, P.; Ganguly, R.; Li, X.; Das, R.; Singha, N.K.; Pich, A. Zwitterionic nanogels and microgels: An overview on their synthesis and applications. Macromol. Rapid Community 2021, 42, 2100112. [Google Scholar] [CrossRef] [PubMed]
- Beng, H.T.; Palaniswamy, R.; Kam, C.T. Synthesis and Characterization of Novel pH-Responsive Polyampholyte Microgels. Macromol. Rapid Community 2006, 27, 522–528. [Google Scholar]
- Chen, H.; Kelley, M.; Guo, C.; Yarger, J.L.; Dai, L.L. Adsorption and release of surfactant into and from multifunctional zwitterionic poly(NIPAm-co-DMAPMA-co-AAc) microgel particles. J. Colloid Interface Sci. 2015, 449, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Nakayama, A.; Kokufuta, E. Preparation and Characterization of Thermosensitive Polyampholyte Nanogels. Langmuir 2003, 19, 3178–3184. [Google Scholar] [CrossRef]
- Fernández-López, C.; Pérez-Balado, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; de Lera, Á.R.; Liz-Marzan, L.M. A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter. 2012, 8, 4165–4170. [Google Scholar] [CrossRef]
- Ahiabu, A.; Serpe, M.J. Rapidly responding ph- and temperature-responsive poly(N-isopropylacrylamide)-based microgels and assemblies. ACS Omega 2017, 2, 1769–1777. [Google Scholar] [CrossRef] [Green Version]
- Kanta Sharker, K.; Ohara, Y.; Shigeta, Y.; Ozoe, S.; Yusa, S. Upper Critical Solution Temperature (UCST) Behavior of Polystyrene-Based Polyampholytes in Aqueous Solution. Polymers 2019, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Ayazbayeva, A.Y.; Shakhvorostov, A.V.; Seilkhanov, T.M.; Aseyev, V.O.; Kudaibergenov, S.E. Synthesis and characterization of novel thermo- and salt-sensitive amphoteric terpolymers based on acrylamide derivatives. Bulletin of the University of Karaganda. Chemistry 2021, 104, 9–20. [Google Scholar]
- Braun, O.; Selb, J.; Candau, F. Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide. Polymer 2001, 42, 8499–8510. [Google Scholar] [CrossRef]
- Lovett, J.R.; Derry, M.J.; Yang, P.; Hatton, F.L.; Warren, N.J.; Fowlera, P.W.; Armes, S.P. Can percolation theory explain the gelation behavior of diblock copolymer worms? Chem. Sci. 2018, 9, 7138–7144. [Google Scholar] [CrossRef] [Green Version]
- Kudaibergenov, S.E.; Shayakhmetov, S.S.; Rafikov, S.R.; Bekturov, E.A. On hydrodynamic properties of amphoteric copolymers. Dokl. Acad. Nauk. USSR 1979, 246, 147–149. [Google Scholar]
- Nisato, G.; Munch, J.P.; Candau, S.J. Swelling, structure, and elasticity of polyampholyte hydrogels. Langmuir 1999, 15, 4236–4244. [Google Scholar] [CrossRef]
- Su, E.; Okay, O. Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur. Polym. J. 2017, 88, 191–204. [Google Scholar] [CrossRef]
- Toleutay, G.; Shakhvorostov, A.; Kabdrakhmanova, S.; Kudaibergenov, S. Solution behavior of quenched or strongly charged polyampholytes in aqueous-salt solutions. Bulletin of Karaganda University. Ser. Chem. 2019, 2, 35–44. [Google Scholar]
- Khokhlov, A.R.; Starodubtzev, S.G.; Vasilevskaya, V.V. Conformational transitions in polymer gels: Theory and experiment. Adv. Polym. Sci. 1993, 109, 123–171. [Google Scholar]
- Park, T.G.; Hoffman, A.S. Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules 1993, 26, 5045–5048. [Google Scholar] [CrossRef]
- Pérez-Fuentes, L.; Bastos-González, D.; Faraudo, J.; Drummond, C. Effect of organic and inorganic ions on the lower critical solution transition and aggregation of PNIPAM. Soft Matter. 2018, 14, 7818–7828. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Zhang, W.; Zhang, W.; Zhu, X. Effect of structural constraint on dynamic self-assembly behavior of PNIPAM-based nonlinear multihydrophilic block copolymers. Soft Matter 2013, 9, 1807–1816. [Google Scholar] [CrossRef]
- Ru, G.; Wang, N.; Huang, S.; Feng, J. 1H HRMAS NMR Study on Phase Transition of Poly(N-isopropylacrylamide) Gels with and without Grafted Comb-Type Chains. Macromolecules 2009, 42, 2074–2078. [Google Scholar] [CrossRef]
- Mori, H.; Endo, T. Amino-Acid-Based Block Copolymers by RAFT Polymerization. Macromol. Rapid Commun. 2012, 33, 1090–1107. [Google Scholar] [CrossRef]
- Sun, S.; Tang, H.; Wu, P.; Wan, X. Supramolecular self-assembly nature of a novel thermotropic liquid crystalline polymer containing no conventional mesogens. Phys. Chem. Chem. Phys. 2009, 11, 9861. [Google Scholar] [CrossRef] [PubMed]
Initial Monomer Feed, mol. % | NIPAM, g | APTAC, g | AMPS, g | H2O, mL | APS, mg | SMBS, mg | MBAA, g | SDS, g | Yield, wt. % | ||
---|---|---|---|---|---|---|---|---|---|---|---|
NIPAM | APTAC | AMPS | |||||||||
90 | 5 | 5 | 0.735 | 0.099 | 0.165 | 98.5 | 30 | 10 | 0.11 | 0.23 | 70 |
90 | 7.5 | 2.5 | 0.735 | 0.149 | 0.082 | 98.5 | 20 | 10 | 0.11 | 0.35 | 88 |
90 | 2.5 | 7.5 | 0.735 | 0.049 | 0.248 | 98.5 | 30 | 10 | 0.11 | 0.23 | 67 |
Nanogel | Ionic Strength μ, mol⋅L−1 (NaCl) | |||||
---|---|---|---|---|---|---|
0 | 0.001 | 0.01 | 0.1 | 0.5 | 1.0 | |
Volume Phase Transition Temperature VPTT, °C | ||||||
NIPAM90-APTAC5-AMPS5 | 40.4 | 39.2 | 40.4 | 47.8 | 45.1 | 38.3 |
NIPAM90-APTAC7.5-AMPS2.5 | 44 | 45.0 | 44.4 | 44.3 | 39.5 | 33.5 |
NIPAM90-APTAC2.5-AMPS7.5 | 41.5 - | 40.7 - | 41.7 - | 42.0 - | 39.6 51.1 1 | 33.0 47.1 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayazbayeva, A.Y.; Shakhvorostov, A.V.; Gussenov, I.S.; Seilkhanov, T.M.; Aseyev, V.O.; Kudaibergenov, S.E. Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride. Nanomaterials 2022, 12, 2343. https://doi.org/10.3390/nano12142343
Ayazbayeva AY, Shakhvorostov AV, Gussenov IS, Seilkhanov TM, Aseyev VO, Kudaibergenov SE. Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride. Nanomaterials. 2022; 12(14):2343. https://doi.org/10.3390/nano12142343
Chicago/Turabian StyleAyazbayeva, Aigerim Ye., Alexey V. Shakhvorostov, Iskander Sh. Gussenov, Tulegen M. Seilkhanov, Vladimir O. Aseyev, and Sarkyt E. Kudaibergenov. 2022. "Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride" Nanomaterials 12, no. 14: 2343. https://doi.org/10.3390/nano12142343
APA StyleAyazbayeva, A. Y., Shakhvorostov, A. V., Gussenov, I. S., Seilkhanov, T. M., Aseyev, V. O., & Kudaibergenov, S. E. (2022). Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride. Nanomaterials, 12(14), 2343. https://doi.org/10.3390/nano12142343