Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400
Abstract
:1. Introduction
2. Thermophysical Properties of the Nanofluids
3. Mathematical Modeling
- r-direction:
- x-direction:
- ▪
- At x = 0, T = T∞, u = u∞ and v = 0
- ▪
- At x = L,
- ▪
- At r = 0,
- ▪
- At r = d/2, and
- ▪
- At X = 0, θ = 0, U = 1 and V = 0
- ▪
- At X = L/d = 20,
- ▪
- At R = 0,
- ▪
- At R = 0.5, and
4. Numerical Solution Procedure
5. Results and Discussion
6. Conclusions
- -
- The Nusselt number increases with nanoparticle addition, mainly due to the thermal conductivity enhancement. The peak enhancement in the heat transfer was noticed as 16% for ZnO concentration of ϕ = 5%, combined with a penalty in viscosity of up to 15.3%.
- -
- The proposed criteria for the evaluation of the nanofluid performance at heat transfer (i.e., EC) showed that PEG 400 can be successfully replaced by PEG 400—ZnO suspensions.
- -
- EC increase at high operating temperature mainly due to the fluid viscosity decrease.
- -
- New correlations for the Nusselt number and friction factor are proposed. These correlations, based on both experimental and numerical data, can be very useful for predicting the behavior of these new fluids both in heat transfer and in service (i.e., friction factor).
Prospectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | |
cp | Specific heat, J/kg K. |
d | Pipe inside diameter, m. |
f | friction factor. |
h | Average heat transfer coefficient, W/m2 K. |
k | Fluid thermal conductivity, W/m K. |
L | Pipe length, m. |
Nu | Average Nusselt number. |
Nu* | Local Nusselt number. |
p | Pressure, N/m2. |
P | Dimensionless pressure. |
Pr | Prandtl number. |
q | Flux, W/m2. |
r | Radial coordinate, m. |
R | Radial dimensionless coordinate. |
Re | Reynolds number. |
T | Local temperature, K. |
Tb | Bulk temperature, K. |
T∞ | Inlet fluid temperature, K. |
Tw | Wall temperature, K. |
u | Velocity components in r direction. |
v | Velocity components in x direction. |
U | Dimensionless velocity component in R direction. |
V | Dimensionless velocity component in X direction. |
x | Longitudinal dimension coordinate, m. |
X | Longitudinal dimensionless coordinate. |
Greek symbols | |
α | Thermal diffusivity, m2/s. |
δ | Thermal term |
θ | Dimensionless temperature. |
μ | Dynamic viscosity, kg/m s. |
ν | Kinematics viscosity, m2/s. |
ρ | Density, kg/m3. |
ϕ | Volume concentration. |
Ω | Hydrodynamic term |
Subscripts | |
f | Base fluid |
nf | Nanofluid |
Abbreviations | |
EC | Evaluation performance criteria |
HVAC | Heating, ventilation, and air conditioning |
PEG | Polyethylene glycol |
References
- Rahmati, M. Effects of ZnO/water nanofluid on the thermal performance of wet cooling towers. Int. J. Refrig. 2021, 131, 526–534. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Heris, S.Z.; Estellé, P. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study. Fuel 2021, 293, 120481. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Li, P.; Wang, X.; Zhang, Y. Tribological performance of CuS–ZnO nanocomposite film: The effect of CuS doping. Tribol. Int. 2013, 58, 7–11. [Google Scholar] [CrossRef]
- Imani-Mofrad, P.; Saeed, Z.H.; Shanbedi, M. Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO/water nanofluid. Energy Convers. Manag. 2016, 127, 199–207. [Google Scholar] [CrossRef]
- Leitner, J.; Bartůněk, V.; Sedmidubský, D.; Jankovskýb, O. Thermodynamic properties of nanostructured ZnO. Appl. Mater. Today 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Bai, Y.; Tan, M.; Sun, K.; Zhang, T.; Wu, Y.; Pan, J.; Xie, H.; Tan, Y. The synergistic effect between ZnO and ZnCr2O4 on the catalytic performance for isobutanol synthesis from syngas. Fuel 2019, 253, 1570–1577. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Heris, S.Z. Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. Int. J. Hydrogen Energy 2020, 45, 23603–23614. [Google Scholar] [CrossRef]
- Wen, T.; Zhu, G.; Jiao, K.; Lu, L. Experimental study on the thermal and flow characteristics of ZnO/water nanofluid in mini-channels integrated with GA-optimized ANN prediction and CFD simulation. Int. J. Heat Mass Transf. 2021, 178, 121617. [Google Scholar] [CrossRef]
- Dinesh, R.; Prasad, M.G.; Kumar, R.R.; Santharaj, N.J.; Santhip, J.; Raaj, A.A. Investigation of tribological and thermophysical properties of engine oil containing nano additives. Mater. Today Proc. 2016, 3, 45–53. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Esfandeh, S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 2018, 143, 493–506. [Google Scholar] [CrossRef]
- Kumar, V.; Tiwari, A.K.; Ghosh, S.K. Effect of chevron angle on heat transfer perormance in plate heat exchanger using ZnO/water nanofluid. Energy Convers. Manag. 2016, 118, 142–154. [Google Scholar] [CrossRef]
- Ali, H.M.; Ali, H.; Liaquat, H.; Maqsood, H.T.B.; Nadir, M.A. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy 2015, 84, 317–324. [Google Scholar] [CrossRef]
- McCants, D.A.; Hayes, A.M.; Paul, T.C.; Khan, J.A.; Shaaban, A.H. Experimental investigation of heat transfer enhancement of CuO–Water and ZnO–water nanofluids flowing over a heated plate. J. Therm. Sci. Eng. Appl. 2019, 11, 041015. [Google Scholar] [CrossRef]
- Islam, R.; Shabani, B.; Andrews, J.; Rosengarten, G. Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell. Int. J. Hydrogen Energy 2017, 42, 19272–19286. [Google Scholar] [CrossRef]
- Sharifpur, M.; Giwa, S.O.; Lee, K.Y.; Ghodsinezhad, H.; Meyer, J.P. Experimental investigation into natural convection of zinc oxide/water nanofluids in a square cavity. Heat Transf. Eng. 2020, 42, 1675–1687. [Google Scholar] [CrossRef]
- Li, Y.; Fernández-Seara, J.; Du, K.; Pardiñas, Á.Á.; Latas, L.L.; Jiang, W. Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow. Appl. Therm. Eng. 2016, 93, 537–548. [Google Scholar] [CrossRef]
- Hozien, O.; El-Maghlany, W.M.; Sorour, M.M.; Mohamed, Y.S. Experimental study on thermophysical properties of TiO2, ZnO and Ag water base nanofluids. J. Mol. Liq. 2021, 334, 116128. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019, 343, 296–308. [Google Scholar] [CrossRef]
- Jaramillo, D.C.H.; Londoño, C.N.; Zapata-Benabithe, Z. Analysis of working nanofluids for a refrigeration system. Dyna 2016, 83, 176–183. [Google Scholar] [CrossRef]
- Saidur, R.; Kazi, S.; Hossain, M.; Rahman, M.; Mohammed, H.A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sustain. Energy Rev. 2011, 15, 310–323. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Almanassra, I.W.; Abdullatif, Y.M.; Al-Ansari, T. An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. 2021, 145, 2817–2872. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Elsaid, A.M. Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Appl. Therm. Eng. 2019, 163, 114398. [Google Scholar] [CrossRef]
- Nourafkan, E.; Asachi, M.; Jin, H.; Wen, D.; Ahmed, W. Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems. Renew. Energy 2019, 140, 264–273. [Google Scholar] [CrossRef]
- Esfe, M.H.; Dalir, R.; Bakhtiari, R.; Afrand, M. Simultaneous effects of multi-walled carbon nanotubes and copper oxide nanoparticles on the rheological behavior of cooling oil: Application for refrigeration systems. Int. J. Refrig. 2019, 104, 123–133. [Google Scholar] [CrossRef]
- Safaei, M.R.; Ranjbarzadeh, R.; Hajizadeh, A.; Bahiraei, M.; Afrand, M.; Karimipour, A. Effects of cobalt ferrite coated with silica nanocomposite on the thermal conductivity of an antifreeze: New nanofluid for refrigeration condensers. Int. J. Refrig. 2019, 102, 86–95. [Google Scholar] [CrossRef]
- Minea, A.A. State of the Art in PEG-Based Heat Transfer Fluids and Their Suspensions with Nanoparticles. Nanomaterials 2021, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro, D.; Hamze, S.; Fal, J.; Marcos, M.A.; Estellé, P.; Żyła, G. Thermal and physical characterization of PEG phase change materials enhanced by carbon-based nanoparticles. Nanomaterials 2020, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Marcos, M.A.; Podolsky, N.E.; Cabaleiro, D.; Lugo, L.; Zakharov, A.O.; Postnov, V.N.; Charykov, N.A.; Ageev, S.V.; Semenov, K.N. MWCNT in PEG-400 nanofluids for thermal applications: A chemical, physical and thermal approach. J. Mol. Liq. 2019, 294, 111616. [Google Scholar] [CrossRef]
- Cherecheş, M.; Bejan, D.; Ibanescu, C.; Danu, M.; Cherecheş, E.I.; Minea, A.A. Viscosity and isobaric heat capacity of PEG 400-Based Phase Change Materials Nano-Enhanced with ZnO nanoparticles. J. Therm. Anal. Calorimetry 2022, 266, 1–12. [Google Scholar] [CrossRef]
- Chereches, M.; Vardaru, A.; Huminic, G.; Chereches, E.I.; Minea, A.A.; Huminic, A. Thermal conductivity of stabilized PEG 400 based nanofluids: An experimental approach. Int. Commun. Heat Mass Transf. 2022, 130, 105798. [Google Scholar] [CrossRef]
- Minea, A.A.; Buonomo, B.; Burggraf, J.; Ercole, D.; Karpaiya, K.R.; Di Pasqua, A.; Sekrani, G.; Steffens, J.; Tibaut, J.; Wichmann, N.; et al. NanoRound: A benchmark study on the numerical approach in nanofluids’ simulation. Int. Commun. Heat Mass Transf. 2019, 108, 104292. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Anoop, K.; Sundararajan, T.; Das, S.K. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 2009, 52, 2189–2195. [Google Scholar] [CrossRef]
- Helvaci, H.; Khan, Z. Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants. Int. J. Heat Mass Transf. 2017, 104, 318–327. [Google Scholar] [CrossRef]
Grid Size | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(60 × 45) | (70 × 55) | (80 × 65) | (90 × 75) | (100 × 85) | ||||||
Re | Nu | f | Nu | f | Nu | f | Nu | f | Nu | f |
400 | 28.2101 | 0.261 | 29.213 | 0.269 | 29.308 | 0.2715 | 29.308 | 0.2715 | 29.308 | 0.2715 |
1000 | 41.61 | 0.143 | 42.121 | 0.15 | 42.661 | 0.1521 | 42.661 | 0.1521 | 42.661 | 0.1521 |
1800 | 53.781 | 0.091 | 54.281 | 0.098 | 54.329 | 0.1079 | 54.329 | 0.1079 | 54.329 | 0.1079 |
T = 303.15 K | T = 313.15 K | T = 323.15 K | T = 333.15 K | |||||
---|---|---|---|---|---|---|---|---|
ϕ | ||||||||
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0.5 | 1.042 | 1.047 | 1.043 | 1.042 | 1.032 | 1.069 | 1.045 | 1.068 |
1.0 | 1.042 | 1.073 | 1.043 | 1.084 | 1.032 | 1.101 | 1.045 | 1.094 |
2.5 | 1.056 | 1.094 | 1.043 | 1.105 | 1.065 | 1.116 | 1.045 | 1.105 |
5.0 | 1.153 | 1.105 | 1.152 | 1.121 | 1.161 | 1.138 | 1.182 | 1.141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minea, A.A.; El-Maghlany, W.M.; Massoud, E.Z. Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400. Nanomaterials 2022, 12, 2344. https://doi.org/10.3390/nano12142344
Minea AA, El-Maghlany WM, Massoud EZ. Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400. Nanomaterials. 2022; 12(14):2344. https://doi.org/10.3390/nano12142344
Chicago/Turabian StyleMinea, Alina Adriana, Wael M. El-Maghlany, and Enass Z. Massoud. 2022. "Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400" Nanomaterials 12, no. 14: 2344. https://doi.org/10.3390/nano12142344
APA StyleMinea, A. A., El-Maghlany, W. M., & Massoud, E. Z. (2022). Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400. Nanomaterials, 12(14), 2344. https://doi.org/10.3390/nano12142344