High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Synthesis of 3D Hierarchical Au/CuS MFs
2.3. Characterization
2.4. SERS Measurements
3. Results and Discussion
3.1. Morphology and Structure
3.2. Influence Factors
3.2.1. Amount of HAuCl4 Solution
3.2.2. Reaction Temperature
3.3. Formation Mechanism
3.4. SERS Performance
3.4.1. High SERS Sensitivity
3.4.2. Improved Repeatability
3.4.3. Environmental Adaptability
3.4.4. Perfect Recyclability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, J.F.; Tian, X.D.; Li, S.B.; Anema, J.R.; Yang, Z.L.; Ding, Y.; Wu, Y.F.; Zeng, Y.M.; Chen, Q.Z.; Ren, B.; et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 2013, 8, 52–65. [Google Scholar] [CrossRef]
- Xu, L.; Yan, W.; Ma, W.; Kuang, H.; Wu, X.; Liu, L.; Zhao, Y.; Wang, L.; Xu, C. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv. Mater. 2015, 27, 1706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Meng, G.; Zheng, P.; Huang, Q.; Li, Z.; Hu, X.; Wang, X.; Huang, Z.; Li, F.; Wu, N. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871–4876. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Yamamoto, Y.S. Between plasmonics and surface-enhanced resonant Raman spectroscopy: Toward single-molecule strong coupling at a hotspot. Nanoscale 2021, 13, 1566–1580. [Google Scholar] [CrossRef]
- Jaculbia, R.B.; Imada, H.; Miwa, K.; Iwasa, T.; Takenaka, M.; Yang, B.; Kazuma, E.; Hayazawa, N.; Taketsugu, T.; Kim, Y. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. [Google Scholar] [CrossRef]
- Zong, C.; Chen, C.-J.; Wang, X.; Hu, P.; Liu, G.-K.; Ren, B. Single-molecule level rare events revealed by dynamic surface-enhanced Raman spectroscopy. Anal. Chem. 2020, 92, 15806–15810. [Google Scholar] [CrossRef] [PubMed]
- Song, S.W.; Kim, D.; Kim, J.; You, J.; Kim, H.M. Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. J. Hazard. Mater. 2021, 414, 125160. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Henzie, J.; Ko, Y.; Lim, H.; Kwon, G.; Na, J.; Kim, H.-J.; Yamauchi, Y.; You, J. Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem. Eng. J. 2021, 419, 129445. [Google Scholar] [CrossRef]
- Schluecker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem.-Int. Edit. 2014, 53, 4756–4795. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Yi, J.; Li, J.F.; Ren, B.; Wu, D.Y.; Panneerselvam, R.; Tian, Z.Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16. [Google Scholar] [CrossRef]
- Styles, M.J.; Rodriguez, R.S.; Szlag, V.M.; Bryson, S.; Gao, Z.; Jung, S.; Reineke, T.M.; Haynes, C.L. Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin. J. Raman Spectrosc. 2020, 52, 482–490. [Google Scholar] [CrossRef]
- Kim, D.; Gwon, G.; Lee, G.; Jeon, Y.; Kim, U.-J.; Alothman, Z.A.; You, J. Surface-enhanced Raman scattering-active AuNR array cellulose films for multi-hazard detection. J. Hazard. Mater. 2021, 402, 123505. [Google Scholar] [CrossRef] [PubMed]
- Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R.P.; Krahne, R.; Rondanina, E.; Leoncini, M.; Liberale, C.; de Angelis, F.; et al. 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few- Molecule Surface-Enhanced Raman Scattering. Adv. Mater. 2014, 26, 2353–2358. [Google Scholar] [CrossRef]
- Trung, L.Q.; Hoang, L.N.; Kim, M.-K.; Lim, S.H.; Son, S.J.; Zoh, K.-D.; Joo, S.-W. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard. Mater. 2021, 402, 123499. [Google Scholar]
- Spedalieri, C.; Szekeres, G.P.; Werner, S.; Guttmann, P.; Kneipp, J. Intracellular optical probing with gold nanostars. Nanoscale 2020, 13, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Bakr, O.M.; Wunsch, B.H.; Stellacci, F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Mater. 2006, 18, 3297–3301. [Google Scholar] [CrossRef]
- Issaad, D.; Moustaoui, H.; Medjahed, A.; Lalaoui, L.; Spadavecchia, J.; Bouafia, M.; de la Chapelle, M.L.; Djaker, N. Scattering correlation spectroscopy and Raman spectroscopy of tiophenol on gold nanoparticles: Comparative study between nanospheres and nanourchins. J. Phys. Chem. C 2017, 121, 18254–18262. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, L.; Zhang, L.; Jing, C.; Shi, X.; Yang, Z.; Long, Y.; Fang, J. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins. Nanoscale 2014, 6, 2567–2572. [Google Scholar] [CrossRef] [PubMed]
- Hamon, C.; Novikov, S.; Scarabelli, L.; Basabe-Desmonts, L.; Liz-Marzan, L.M. Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures. ACS Nano 2014, 8, 10694–10703. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W.P.; Gibson, L.F.; Ma, D.; Liu, Y.; Wu, N. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013, 7, 4967–4976. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, G.; Huang, Q.; Huang, Z.; Chu, Z. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration. Cryst. Growth Des. 2011, 11, 748–752. [Google Scholar] [CrossRef]
- Willets, K.A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854–3864. [Google Scholar] [CrossRef]
- Zhang, Q.; Lee, Y.H.; Phang, I.Y.; Lee, C.K.; Ling, X.Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 2014, 10, 2703–2711. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Liu, X.; Lu, W.; Dai, J.; Lei, D.Y.; MacFarlane, D.R. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 2015, 27, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Jeon, T.Y.; Park, S.-G.; Kim, D.-H.; Kim, S.-H. Standing-wave-assisted creation of nanopillar arrays with vertically integrated nanogaps for SERS-active substrates. Adv. Funct. Mater. 2015, 25, 4681–4688. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Wang, X.; Zou, Z. Evaporation-induced self-assembly of silver nanospheres and gold nanorods on a super-hydrophobic substrate for SERS applications. Nanotechnology 2021, 32, 135601. [Google Scholar] [CrossRef]
- He, D.; Hu, B.; Yao, Q.-F.; Wang, K.; Yu, S.-H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002. [Google Scholar] [CrossRef]
- Vendamani, V.S.; Rao, S.V.S.N.; Pathak, A.P.; Soma, V.R. Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate. RSC Adv. 2020, 10, 44747–44755. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Shang, W.; Ma, G.; Zhu, Y.; Wu, M. Metal organic framework wrapped gold nanourchin assembled on filter membrane for fast and sensitive SERS analysis. Sens. Actuator B-Chem. 2021, 326. [Google Scholar] [CrossRef]
- Kang, T.; Zhu, J.; Luo, X.; Jia, W.; Wu, P.; Cai, C. Controlled self-assembly of a close-packed gold octahedra array for SERS sensing exosomal microRNAs. Anal. Chem. 2021, 93, 2519–2526. [Google Scholar] [CrossRef]
- Farber, C.; Kurouski, D. Detection and Identification of Plant Pathogens on Maize Kernels with a Hand-Held Raman Spectrometer. Anal. Chem. 2018, 90, 3009–3012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, L.A.; Qian, X.; Nie, S. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhou, X.; Liu, Y.; Wang, X. Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering (SERS) biosensor for uranyl ions detection. Sens. Actuator B-Chem. 2020, 311, 127676. [Google Scholar] [CrossRef]
- Kandjani, A.E.; Sabri, Y.M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S.K. Detect, remove and reuse: A new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584. [Google Scholar] [CrossRef]
- Yang, J.-L.; Xu, J.; Ren, H.; Sun, L.; Xu, Q.-C.; Zhang, H.; Li, J.-F.; Tian, Z.-Q. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. Nanoscale 2017, 9, 6254–6258. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 2010, 20, 2815–2824. [Google Scholar] [CrossRef]
- Vukovic, M.; Stankovic, Z.D.; Rajcic-Vujasinovic, M.; Cvetkovski, V. Voltammetric Investigations of Anodic Dissolution of Natural Mineral Chalcopyrite. J. Min. Metall. B 2008, 44, 115–124. [Google Scholar] [CrossRef]
- Wen, X.G.; Yang, S.H. Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method. Nano Lett. 2002, 2, 451–454. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper (I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Chen, W.; Xie, Y.; Verma, S.K.; Destro, P.; Zhan, G.; Chen, X.; Zhao, X.; Schuck, P.J.; Kriegel, I. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au3+ ions. Nanoscale 2018, 10, 2781–2789. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef]
- Tay, L.-L.; Poirier, S.; Ghaemi, A.; Hulse, J.; Wang, S. Paper-based surface-enhanced Raman spectroscopy sensors for field applications. J. Raman Spectrosc. 2020, 52, 536–572. [Google Scholar] [CrossRef]
- Karn-orachai, K.; Sanguansap, Y.; Pankleaub, K.; Noppha, O.; Wiriyakun, N.; Kanatharana, P.; Laocharoensuk, R. Internal magnetic driven self-assembly of gold-nickel nanowires as SERS substrate for thiram fungicide detection using handheld Raman spectrometer. Appl. Surf. Sci. 2020, 529, 147236. [Google Scholar] [CrossRef]
- Ding, H.; Han, D.; Han, Y.; Liang, Y.; Liu, X.; Li, Z.; Zhu, S.; Wu, S. Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization. J. Hazard. Mater. 2020, 393, 147236. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.; Nazir, R.; Fageria, P.; Pande, S. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Sci. Rep. 2016, 6, 34738. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Liu, W.; Li, J.; Wu, W.; Zhao, Q.; Bao, H.; Zhou, L.; Zhu, S.; Kong, J.; Zhang, H.; et al. High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. Nanomaterials 2022, 12, 2359. https://doi.org/10.3390/nano12142359
Fu H, Liu W, Li J, Wu W, Zhao Q, Bao H, Zhou L, Zhu S, Kong J, Zhang H, et al. High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. Nanomaterials. 2022; 12(14):2359. https://doi.org/10.3390/nano12142359
Chicago/Turabian StyleFu, Hao, Weiwei Liu, Junqing Li, Wenguang Wu, Qian Zhao, Haoming Bao, Le Zhou, Shuyi Zhu, Jinglin Kong, Hongwen Zhang, and et al. 2022. "High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection" Nanomaterials 12, no. 14: 2359. https://doi.org/10.3390/nano12142359
APA StyleFu, H., Liu, W., Li, J., Wu, W., Zhao, Q., Bao, H., Zhou, L., Zhu, S., Kong, J., Zhang, H., & Cai, W. (2022). High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. Nanomaterials, 12(14), 2359. https://doi.org/10.3390/nano12142359