Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2@HNTs Composite
2.2. Preparation of TiO2@HNTs/Alcaps Composite
2.3. Structural Analysis of TiO2@HNT/Alcaps
2.4. Measurement of Rhodamine B Adsorption
2.5. Photodegradation of Rhodamine B Using the Capsules
3. Results and Discussion
3.1. Morphology of TiO2@HNT/Alcaps Capsule
3.2. Thermogravimetric Analysis of TiO2@HNT/Alcaps
3.3. Adsorption and Kinetic Studies of Rhodamine B Using TiO2@HNT/Alcaps
3.4. Photocatalytic Degradation of Rhodamine B Using TiO2@HNT/Alcaps
3.5. Catalyst Recycling for Photocatalytic Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandian, C.J.; Palaniyel, R.; Dhananasekaran, S. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng. 2015, 23, 1307–1315. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Neppolian, B.; Choi, H.C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 2002, 46, 1173–1181. [Google Scholar] [CrossRef]
- Pekakis, P.A.; Xekoukoulotakis, N.P.; Mantzavinos, D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006, 40, 1276–1286. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Ghanbarian, M.; Nasseri, S.; Khairi, A. Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination 2009, 239, 309–316. [Google Scholar] [CrossRef]
- Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Lvov, Y.; Wang, W.C.; Zhang, L.Q.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Du, M.L.; Guo, B.C.; Jia, D.M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur. Polym. J. 2006, 42, 1362–1369. [Google Scholar] [CrossRef]
- Bhagabati, P.; Chaki, T.K.; Khastgir, D. One-Step in Situ Modification of Halloysite Nanotubes: Augmentation in Polymer-Filler Interface Adhesion in Nanocomposites. Ind. Eng. Chem. 2015, 54, 6698–6712. [Google Scholar] [CrossRef]
- Zhao, M.F.; Liu, P. Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater. 2008, 112, 419–424. [Google Scholar] [CrossRef]
- Luo, P.; Zhao, Y.F.; Zhang, B.; Liu, J.D.; Yang, Y.; Liu, J.F. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010, 44, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.C.; Zhang, B.; Mei, D.D.; Zhang, H.Q.; Liu, J.D. Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 2011, 268, 111–116. [Google Scholar] [CrossRef]
- Kiani, G.; Dostali, M.; Rostami, A.; Khataee, A.R. Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl. Clay Sci. 2011, 54, 34–39. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Wu, J.Y.; Yan, H. Selective desorption characteristics of halloysite nanotubes for anionic azo dyes. Rsc Adv. 2014, 4, 15389–15393. [Google Scholar] [CrossRef]
- Chen, H.; Yan, H.; Pei, Z.Z.; Wu, J.Y.; Li, R.R.; Jin, Y.X.; Zhao, J. Trapping characteristic of halloysite lumen for methyl orange. Appl. Surf. Sci. 2015, 347, 769–776. [Google Scholar] [CrossRef]
- Chaari, I.; Moussi, B.; Jamoussi, F. Interactions of the dye, CI direct orange 34 with natural clay. J. Alloys Compd. 2015, 647, 720–727. [Google Scholar] [CrossRef]
- Papoulis, D.; Komarneni, S.; Nikolopoulou, A.; Tsolis-Katagas, P.; Panagiotaras, D.; Kacandes, H.G.; Zhang, P.; Yin, S.; Sato, T.; Katsuki, H. Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Appl. Clay Sci. 2010, 50, 118–124. [Google Scholar] [CrossRef]
- Wang, R.J.; Jiang, G.H.; Ding, Y.W.; Wang, Y.; Sun, X.K.; Wang, X.H.; Chen, W.X. Photocatalytic Activity of Heterostructures Based on TiO2 and Halloysite Nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 4154–4158. [Google Scholar] [CrossRef]
- Lee, J.; Seong, S.; Jin, S.; Jeong, Y.; Noh, J. Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. J. Ind. Eng. Chem. 2021, 100, 126–133. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, Y.P.; Liu, T.X. Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. J. Colloid Interface Sci. 2015, 439, 62–68. [Google Scholar] [CrossRef]
- Li, C.P.; Wang, J.Q.; Feng, S.Q.; Yang, Z.L.; Ding, S.J. Low-temperature synthesis of heterogeneous crystalline TiO2-halloysite nanotubes and their visible light photocatalytic activity. J. Mater. Chem. 2013, 1, 8045–8054. [Google Scholar] [CrossRef]
- Li, C.P.; Wang, J.; Guo, H.; Ding, S.J. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 2015, 458, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Papoulis, D.; Panagiotaras, D.; Tsigrou, P.; Christoforidis, K.C.; Petit, C.; Apostolopoulou, A.; Stathatos, E.; Komarneni, S.; Koukouvelas, I. Halloysite and sepiolite -TiO2 nanocomposites: Synthesis characterization and photocatalytic activity in three aquatic wastes. Mater. Sci. Semicond. Process. 2018, 85, 1–8. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Tankhiwale, R. Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: Part-1. React. Funct. Polym. 2006, 66, 645–658. [Google Scholar] [CrossRef]
- Elzatahry, A.A.; Soliman, E.A.; Mohy Eldin, M.S.; Elsayed Youssef, M. Experimental and Simulation Study on Removal of Methylene Blue Dye by Alginate Micro-beads. J. Am. Sci. 2010, 6, 846–851. [Google Scholar]
- Shawky, H.A. Improvement of Water Quality Using Alginate/Montmorillonite Composite Beads. J. Appl. Polym. Sci. 2011, 119, 2371–2378. [Google Scholar] [CrossRef]
- Braccini, I.; Perez, S. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Albarelli, J.Q.; Santos, D.T.; Murphy, S.; Oelgemoller, M. Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorisation. Water Sci. Technol. 2009, 60, 1081–1087. [Google Scholar] [CrossRef]
- Callegaro, S.; Minetto, D.; Pojana, G.; Bilanicova, D.; Libralato, G.; Ghirardini, A.V.; Hassellov, M.; Marcomini, A. Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater. Ecotoxicol. Environ. Saf. 2015, 117, 107–114. [Google Scholar] [CrossRef]
- Nan, J.; Huang, C.; Tian, L.; Shen, C. Effects of micro-emulsion method on microwave dielectric properties of 0.9Al2O3-0.1TiO2 ceramics. Mater. Lett. 2019, 249, 132–135. [Google Scholar] [CrossRef]
- Shivaraj, B.; Prabhakara, M.C.; Naik, H.S.B.; Naik, E.I.; Viswanath, R.; Shashank, M.; Swamy, B.E.K. Optical, bio-sensing, and antibacterial studies on Ni-doped ZnO nanorods, fabricated by chemical co-precipitation method. Inorg. Chem. Commun. 2021, 134, 109049. [Google Scholar] [CrossRef]
- Lee, B.T.; Han, J.K.; Gain, A.K.; Lee, K.H.; Saito, F. TEM microstructure characterization of nano TiO2 coated on nano ZrO2 powders and their photocatalytic activity. Mater. Lett. 2006, 60, 2101–2104. [Google Scholar] [CrossRef]
- Hongquan, J.; Yanduo, L.; Jingshen, L.; Haiyan, W. Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process. J. Rare Earths 2016, 34, 604–613. [Google Scholar]
- Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanopart. Res. 2013, 15, 1669. [Google Scholar] [CrossRef]
- Liu, L.; Wan, Y.Z.; Xie, Y.D.; Zhai, R.; Zhang, B.; Liu, J.D. The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem. Eng. J. 2012, 187, 210–216. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, B.; Zhao, Y.F.; Wang, J.H.; Zhang, H.Q.; Liu, J.D. Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes. Korean J. Chem. Eng. 2011, 28, 800–807. [Google Scholar] [CrossRef]
- Rahman, Q.I.; Ahmad, M.; Misra, S.K.; Lohani, M. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 2013, 91, 170–174. [Google Scholar] [CrossRef]
- Gjipalaj, J.; Alessandri, I. Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. J. Environ. Chem. Eng. 2017, 5, 1763–1770. [Google Scholar] [CrossRef]
- Tripathy, T.; Singh, R.P. Characterization of polyacrylamide grafted sodium alginate: A novel polymeric flocculant. J. Appl. Polym. Sci. 2011, 81, 3296–3309. [Google Scholar] [CrossRef]
- Chiew, C.S.C.; Yeoh, H.K.; Pasbakhsh, P.; Krishnaiah, K.; Poh, P.E.; Tey, B.T.; Chan, E.S. Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption. Appl. Clay Sci. 2016, 119, 301–310. [Google Scholar] [CrossRef]
- Mishra, G.; Mukhopadhyay, M. TiO2 decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci. Rep. 2019, 9, 4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte Neto, J.F.; Pereira, I.D.S.; da Silva, V.C.; Ferreira, H.C.; de A. Neves, G.; Menezes, R.R. Study of equillibrium and kinetic adsorption of rhodamine B onto purified bentonite clays. Cerâmica 2018, 64, 598–607. [Google Scholar] [CrossRef]
- Li, Y.J.; Sun, S.G.; Ma, M.Y.; Ouyang, Y.Z.; Yan, W.B. Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: Effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem. Eng. J. 2008, 142, 147–155. [Google Scholar] [CrossRef]
Sample | qe (mg/g) | k2(g/mg min) | R2 |
---|---|---|---|
Adsorption | |||
Alginate | 0.1026 | 1.9690 | 0.9967 |
HNT/Alcap | 0.1191 | 1.2501 | 0.9961 |
TiO2/Alcap | 0.1420 | 0.7619 | 0.9948 |
TiO2@HNT/Alcap | 0.1704 | 0.5635 | 0.9932 |
Sample | Dye removal % | k1 (min−1) | R2 |
---|---|---|---|
UV irradiation | |||
Dye | 9.980 | 0.0007 | 0.9918 |
Alginate gel | 20.30 | 0.0017 | 0.9963 |
HNT/Alcap | 38.01 | 0.0031 | 0.9943 |
TiO2/Alcap | 51.32 | 0.0052 | 0.9933 |
TiO2@HNT/Alcap | 97.65 | 0.0312 | 0.9939 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Seong, S.; Jin, S.; Kim, J.; Jeong, Y.; Noh, J. Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes. Nanomaterials 2022, 12, 2361. https://doi.org/10.3390/nano12142361
Lee J, Seong S, Jin S, Kim J, Jeong Y, Noh J. Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes. Nanomaterials. 2022; 12(14):2361. https://doi.org/10.3390/nano12142361
Chicago/Turabian StyleLee, Jewon, Sicheon Seong, Soyeong Jin, Jaeyong Kim, Youngdo Jeong, and Jaegeun Noh. 2022. "Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes" Nanomaterials 12, no. 14: 2361. https://doi.org/10.3390/nano12142361
APA StyleLee, J., Seong, S., Jin, S., Kim, J., Jeong, Y., & Noh, J. (2022). Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes. Nanomaterials, 12(14), 2361. https://doi.org/10.3390/nano12142361