Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy
Abstract
:1. Introduction
2. Self-Assembling Nanoparticles Containing Hyaluronic Acid
3. Application of HA-SANPs in Cancer Therapy
3.1. HA-SANPs Obtained by Electrostatic Interactions
3.2. HA-SANPs Obtained by Hydrophobic Interactions
3.2.1. Steroid Modified HA in the Formation of HA-SANPs
3.2.2. Lipid-modified HA in the formation of HA-SANPs
3.2.3. Phenyl Compounds-Modified HA in the Formation of HA-SANPs
3.3. HA-SANPs Obtained by HA Modification with Polymeric Materials
3.4. HA-SANPs by Supramolecular Assemblies
3.5. HA-Prodrug Nanoassemblies
4. Conclusions and Perspectives
Funding
Informed Consent Statement
Conflicts of Interest
References
- Ma, Y.F.; Huang, J.; Song, S.J.; Chen, H.B.; Zhang, Z.J. Cancer-Targeted Nanotheranostics: Recent Advances and Perspectives. Small 2016, 12, 4936–4954. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor Targeting Via Epr: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Overchuk, M.; Zheng, G. Overcoming Obstacles in the Tumor Microenvironment: Recent Advancements in Nanoparticle Delivery for Cancer Theranostics. Biomaterials 2018, 156, 217–237. [Google Scholar] [CrossRef]
- Yao, Y.H.; Zhou, Y.X.; Liu, L.H.; Xu, Y.Y.; Chen, Q.; Wang, Y.L.; Wu, S.J.; Deng, Y.C.; Zhang, J.M.; Shao, A.W. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric Nanoparticles: The Future of Nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Sailor, M.J.; Park, J.H. Hybrid Nanoparticles for Detection and Treatment of Cancer. Adv. Mater. 2012, 24, 3779–3802. [Google Scholar] [CrossRef]
- Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-Polymer Hybrid Nanoparticles as a Next-Generation Drug Delivery Platform: State of the Art, Emerging Technologies, and Perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef]
- Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A Review of Drug Delivery Systems Based on Nanotechnology and Green Chemistry: Green Nanomedicine. Int. J. Nanomed. 2017, 12, 2957–2977. [Google Scholar] [CrossRef]
- Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The Importance of Nanoparticle Shape in Cancer Drug Delivery. Expert Opin. Drug Deliv. 2015, 12, 129–142. [Google Scholar] [CrossRef]
- Vincent, M.P.; Navidzadeh, J.O.; Bobbala, S.; Scott, E.A. Leveraging Self-Assembled Nanobiomaterials for Improved Cancer Immunotherapy. Cancer Cell 2022, 40, 255–276. [Google Scholar] [CrossRef] [PubMed]
- Araste, F.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Self-Assembled Polymeric Vesicles: Focus on Polymersomes in Cancer Treatment. J. Control. Release 2021, 330, 502–528. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Wang, L.; Zhang, J.Y.; Ou, C.J.; Si, W.L.; Wang, W.J.; Zhang, Q.M.; Dong, X.C. Self-Assembled Nanoparticles as Cancer Therapeutic Agents. Adv. Mater. Interfaces 2021, 8, 2001602. [Google Scholar] [CrossRef]
- Yang, L.; Tang, J.; Yin, H.; Yang, J.; Xu, B.; Liu, Y.K.; Hu, Z.; Yu, B.T.; Xia, F.F.; Zou, G.W. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode Nirf/Mr Imaging and Photodynamic Therapy Applications. Acs Biomater. Sci. Eng. 2022, 8, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Curcio, M.; Brindisi, M.; Cirillo, G.; Frattaruolo, L.; Leggio, A.; Rago, V.; Nicoletta, F.P.; Cappello, A.R.; Iemma, F. Smart Lipid-Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 2386. [Google Scholar] [CrossRef]
- Li, Q.; Fu, D.S.; Zhang, J.; Yan, H.; Wang, H.F.; Niu, B.L.; Guo, R.J.; Liu, Y.M. Dual Stimuli-Responsive Polypeptide-Calcium Phosphate Hybrid Nanoparticles for Co-Delivery of Multiple Drugs in Cancer Therapy. Colloids Surf. B Biointerfaces 2021, 200, 111586. [Google Scholar] [CrossRef]
- Bevacqua, E.; Curcio, M.; Saletta, F.; Vittorio, O.; Cirillo, G.; Tucci, P. Dextran-Curcumin Nanosystems Inhibit Cell Growth and Migration Regulating the Epithelial to Mesenchymal Transition in Prostate Cancer Cells. Int. J. Mol. Sci. 2021, 22, 7013. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, J.; Yu, X.N.; Liu, X.X.; Cheng, Y.N.; Zhou, C.; Li, M.Y.; Shi, L.; Deng, Y.; Liu, H.; et al. Tumor-Targeting Ph/Redox Dual-Responsive Nanosystem Epigenetically Reverses Cancer Drug Resistance by Co-Delivering Doxorubicin and Gcn5 Sirna. Acta Biomater. 2021, 135, 556–566. [Google Scholar] [CrossRef]
- Curcio, M.; Paoli, A.; Cirillo, G.; di Pietro, S.; Forestiero, M.; Giordano, F.; Mauro, L.; Amantea, D.; di Bussolo, V.; Nicoletta, F.P.; et al. Combining Dextran Conjugates with Stimuli-Responsive and Folate-Targeting Activity: A New Class of Multifunctional Nanoparticles for Cancer Therapy. Nanomaterials 2021, 11, 1108. [Google Scholar] [CrossRef]
- Vyas, D.; Patel, M.; Wairkar, S. Strategies for Active Tumor Targeting-an Update. Eur. J. Pharmacol. 2022, 915, 174512. [Google Scholar] [CrossRef]
- Kazemi, Y.; Dehghani, S.; Nosrati, R.; Taghdisi, S.M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Recent Progress in the Early Detection of Cancer Based on Cd44 Biomarker; Nano-Biosensing Approaches. Life Sci. 2022, 300, 120593. [Google Scholar] [CrossRef] [PubMed]
- Platt, V.M.; Szoka, F.C. Anticancer Therapeutics: Targeting Macromolecules and Nanocarriers to Hyaluronan or Cd44, a Hyaluronan Receptor. Mol. Pharm. 2008, 5, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Chen, Q.L.; Xu, W.G.; Yu, M.; Yang, Y.Y.; Zou, B.H.; Zhang, Y.S.; Ding, J.X.; Yu, Z.Q. Self-Targeting Visualizable Hyaluronate Nanogel for Synchronized Intracellular Release of Doxorubicin and Cisplatin in Combating Multidrug-Resistant Breast Cancer. Nano Res. 2021, 14, 846–857. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, Y.Y.; Xu, L.; Li, Q.S.; Zhao, D.Y.; Li, Z.B.; Zhang, H.C.; Zhang, H.T.; Kan, Q.M.; Sun, J.; et al. Exploring the Relationship of Hyaluronic Acid Molecular Weight and Active Targeting Efficiency for Designing Hyaluronic Acid-Modified Nanoparticles. Asian J. Pharm. Sci. 2019, 14, 521–530. [Google Scholar] [CrossRef]
- Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between Hyaluronan and Its Receptors (Cd44, Rhamm) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015, 6, 201. [Google Scholar] [CrossRef]
- Arpicco, S.; Lerda, C.; Pozza, E.D.; Costanzo, C.; Tsapis, N.; Stella, B.; Donadelli, M.; Dando, I.; Fattal, E.; Cattel, L.; et al. Hyaluronic Acid-Coated Liposomes for Active Targeting of Gemcitabine. Eur. J. Pharm. Biopharm. 2013, 85, 373–380. [Google Scholar] [CrossRef]
- Arpicco, S.; Bartkowski, M.; Barge, A.; Zonari, D.; Serpe, L.; Milla, P.; Dosio, F.; Stella, B.; Giordani, S. Effects of the Molecular Weight of Hyaluronic Acid in a Carbon Nanotube Drug Delivery Conjugate. Front. Chem. 2020, 8, 578008. [Google Scholar] [CrossRef]
- Li, J.C.; He, Y.; Sun, W.J.; Luo, Y.; Cai, H.D.; Pan, Y.Q.; Shen, M.W.; Xia, J.D.; Shi, X.Y. Hyaluronic Acid-Modified Hydrothermally Synthesized Iron Oxide Nanoparticles for Targeted Tumor Mr Imaging. Biomaterials 2014, 35, 3666–3677. [Google Scholar] [CrossRef]
- Li, W.J.; Zheng, C.F.; Pan, Z.Y.; Chen, C.; Hu, D.H.; Gao, G.H.; Kang, S.D.; Cui, H.D.; Gong, P.; Cai, L.T. Smart Hyaluronidase-Actived Theranostic Micelles for Dual-Modal Imaging Guided Photodynamic Therapy. Biomaterials 2016, 101, 10–19. [Google Scholar] [CrossRef]
- Tiwari, S.; Bahadur, P. Modified Hyaluronic Acid Based Materials for Biomedical Applications. Int. J. Biol. Macromol. 2019, 121, 556–571. [Google Scholar] [CrossRef]
- Abbas, M.; Zou, Q.L.; Li, S.K.; Yan, X.H. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. Adv. Mater. 2017, 29, 1605021. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.B.; Lin, Z.I.; Chen, J.A.; Xu, Z.R.; Gu, J.Y.; Law, W.C.; Yang, J.H.C.; Chen, C.K. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol. Biosci. 2022, 22, 2100349. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.Y.; Zheng, C.; Jin, Y.; Zhu, K.J.E. Polymeric Micelles as Nanocarriers for Drug Delivery. Expert Opin. Ther. Pat. 2007, 17, 819–830. [Google Scholar] [CrossRef]
- Antonietti, M.; Forster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323–1333. [Google Scholar] [CrossRef]
- Cheow, W.S.; Hadinoto, K. Self-Assembled Amorphous Drug-Polyelectrolyte Nanoparticle Complex with Enhanced Dissolution Rate and Saturation Solubility. J. Colloid Interface Sci. 2012, 367, 518–526. [Google Scholar] [CrossRef]
- Qiu, F.; Becker, K.W.; Knight, F.C.; Baljon, J.J.; Sevimli, S.; Shae, D.; Gilchuk, P.; Joyce, S.; Wilson, J.T. Poly(Propylacrylic Acid)-Peptide Nanoplexes as a Platform for Enhancing the Immunogenicity of Neoantigen Cancer Vaccines. Biomaterials 2018, 182, 82–91. [Google Scholar] [CrossRef]
- Yi, S.H.; Liao, R.Q.; Zhao, W.; Huang, Y.S.; He, Y. Multifunctional Co-Transport Carriers Based on Cyclodextrin Assembly for Cancer Synergistic Therapy. Theranostics 2022, 12, 2560–2579. [Google Scholar] [CrossRef]
- Yang, J.H.; Jia, C.Y.; Yang, J.S. Designing Nanoparticle-Based Drug Delivery Systems for Precision Medicine. Int. J. Med. Sci. 2021, 18, 2943–2949. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzan, L.M. Directed Self-Assembly of Nanoparticles. Acs. Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Barros, C.H.N.; Hiebner, D.W.; Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Synthesis and Self-Assembly of Curcumin-Modified Amphiphilic Polymeric Micelles with Antibacterial Activity. J. Nanobiotechnol. 2021, 19, 1–15. [Google Scholar] [CrossRef]
- Mahalingam, M.; Krishnamoorthy, K. Selection of a Suitable Method for the Preparation of Polymeric Nanoparticles: Multi-Criteria Decision Making Approach. Adv. Pharm. Bull. 2015, 5, 57–67. [Google Scholar]
- Kim, Y.J.; Lee, K.P.; Lee, D.Y.; Kim, Y.T.; Koh, D.; Lim, Y.; Yoon, M.S. Anticancer Activity of a New Chalcone Derivative-Loaded Polymeric Micelle. Macromol. Res. 2019, 27, 48–54. [Google Scholar] [CrossRef]
- Park, J.E.; Hickey, D.R.; Jun, S.; Kang, S.; Hu, X.; Chen, X.J.; Park, S.J. Surfactant-Assisted Emulsion Self-Assembly of Nanoparticles into Hollow Vesicle-Like Structures and 2d Plates. Adv. Funct. Mater. 2016, 26, 7791–7798. [Google Scholar] [CrossRef]
- Mauro, N.; Utzeri, M.A.; Drago, S.E.; Nicosia, A.; Costa, S.; Cavallaro, G.; Giammona, G. Hyaluronic Acid Dressing of Hydrophobic Carbon Nanodots: A Self-Assembling Strategy of Hybrid Nanocomposites with Theranostic Potential. Carbohydr. Polym. 2021, 267, 118213. [Google Scholar] [CrossRef]
- Fan, X.H.; Zhao, X.S.; Qu, X.K.; Fang, J. Ph Sensitive Polymeric Complex of Cisplatin with Hyaluronic Acid Exhibits Tumor-Targeted Delivery and Improved in Vivo Antitumor Effect. Int. J. Pharm. 2015, 496, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cai, J.Z.; Wu, B.; Shen, Z.Y. Ph-Responsive Hyaluronic Acid Nanoparticles Coloaded with Sorafenib and Cisplatin for Treatment of Hepatocellular Carcinoma. J. Biomater. Appl. 2019, 34, 219–228. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Tung, C.H. Cisplatin Cross-Linked Multifunctional Nanodrugplexes for Combination Therapy. ACS Appl. Mater. Interfaces 2017, 9, 8547–8555. [Google Scholar] [CrossRef]
- Gong, G.D.; Pan, J.Z.; He, Y.X.; Shang, J.J.; Wang, X.L.; Zhang, Y.Y.; Zhang, G.L.; Wang, F.; Zhao, G.; Guo, J.L. Self-Assembly of Nanomicelles with Rationally Designed Multifunctional Building Blocks for Synergistic Chemo-Photodynamic Therapy. Theranostics 2022, 12, 2028–2040. [Google Scholar] [CrossRef]
- Wang, S.H.; Cao, M.J.; Deng, X.W.; Xiao, X.Q.; Yin, Z.X.; Hu, Q.; Zhou, Z.X.; Zhang, F.; Zhang, R.R.; Wu, Y.; et al. Degradable Hyaluronic Acid/Protamine Sulfate Interpolyelectrolyte Complexes as Mirna-Delivery Nanocapsules for Triple-Negative Breast Cancer Therapy. Adv. Healthc. Mater. 2015, 4, 281–290. [Google Scholar] [CrossRef]
- Deng, X.W.; Cao, M.J.; Zhang, J.K.; Hu, K.L.; Yin, Z.X.; Zhou, Z.X.; Xiao, X.Q.; Yang, Y.S.; Sheng, W.; Wu, Y.; et al. Hyaluronic Acid-Chitosan Nanoparticles for Co-Delivery of M1r-34a and Doxorubicin in Therapy against Triple Negative Breast Cancer. Biomaterials 2014, 35, 4333–4344. [Google Scholar] [CrossRef]
- Abruzzo, A.; Zuccheri, G.; Belluti, F.; Provenzano, S.; Verardi, L.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Calonghi, N. Chitosan Nanoparticles for Lipophilic Anticancer Drug Delivery: Development, Characterization and in Vitro Studies on Ht29 Cancer Cells. Colloids Surf. B-Biointerfaces 2016, 145, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.D.; Wang, F.L.; Pan, S.; Yuan, S.P.; Liu, Y.S.; Xu, Y.X. Redox/Ph-Responsive Biodegradable Thiol-Hyaluronic Acid/Chitosan Charge-Reversal Nanocarriers for Triggered Drug Release. Polymers 2021, 13, 3785. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Kuo, W.T. Redox/Ph-Responsive 2-in-1 Chimeric Nanoparticles for the Co-Delivery of Doxorubicin and Sirna. Polymers 2021, 13, 4362. [Google Scholar] [CrossRef]
- Beals, N.; Model, M.A.; Worden, M.; Hegmann, T.; Basu, S. Intermolecular G-Quadruplex Induces Hyaluronic Acid-DNA Superpolymers Causing Cancer Cell Swelling, Blebbing, and Death. Acs Appl. Mater. Interfaces 2018, 10, 6869–6878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, L.L.; Li, D.; Lao, Y.H.; Liu, D.Z.; Li, M.Q.; Ding, J.X.; Chen, X.S. Tumor Microenvironment-Responsive Hyaluronate-Calcium Carbonate Hybrid Nanoparticle Enables Effective Chemotherapy for Primary and Advanced Osteosarcomas. Nano Res. 2018, 11, 4806–4822. [Google Scholar] [CrossRef]
- Pan, Y.T.; Ding, Y.F.; Han, Z.H.; Yuwen, L.H.; Ye, Z.; Mok, G.S.P.; Li, S.K.; Wang, L.H. Hyaluronic Acid-Based Nanogels Derived from Multicomponent Self-Assembly for Imaging-Guided Chemo-Photodynamic Cancer Therapy. Carbohydr. Polym. 2021, 268, 118257s. [Google Scholar] [CrossRef]
- Hou, G.H.; Qian, J.M.; Guo, M.; Xu, W.J.; Wang, J.L.; Wang, Y.P.; Suo, A.L. Hydrazided Hyaluronan/Cisplatin/Indocyanine Green Coordination Nanoprodrug for Photodynamic Chemotherapy in Liver Cancer. Carbohydr. Polym. 2022, 276, 118810. [Google Scholar] [CrossRef]
- Shin, W.J.; Noh, H.J.; Noh, Y.W.; Kim, S.; Um, S.H.; Lim, Y.T. Hyaluronic Acid-Supported Combination of Water Insoluble Immunostimulatory Compounds for Anti-Cancer Immunotherapy. Carbohydr. Polym. 2017, 155, 1–10. [Google Scholar] [CrossRef]
- Choi, K.M.; Jang, M.; Kim, J.H.; Ahn, H.J. Tumor-Specific Delivery of Sirna Using Supramolecular Assembly of Hyaluronic Acid Nanoparticles and 2b Rna-Binding Protein/Sirna Complexes. Biomaterials 2014, 35, 7121–7132. [Google Scholar] [CrossRef]
- Hu, D.R.; Mezghrani, O.; Zhang, L.; Chen, Y.; Ke, X.; Ci, T.Y. Ge11 Peptide Modified and Reduction-Responsive Hyaluronic Acid-Based Nanoparticles Induced Higher Efficacy of Doxorubicin for Breast Carcinoma Therapy. Int. J. Nanomed. 2016, 11, 5125–5147. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, X.; Zhao, C.Y.; Shao, L.H.; Lu, J.Q.; Tong, Y.J.; Chen, L.; Cui, X.Y.; Sun, H.L.; Liu, J.X.; et al. From One to All: Self-Assembled Theranostic Nanoparticles for Tumor-Targeted Imaging and Programmed Photoactive Therapy. J. Nanobiotechnol. 2019, 17, 1–12. [Google Scholar] [CrossRef]
- Song, M.J.; Liang, Y.; Li, K.K.; Zhang, J.; Zhang, N.; Tian, B.C.; Han, J.T. Hyaluronic Acid Modified Liposomes for Targeted Delivery of Doxorubicin and Paclitaxel to Cd44 Overexpressing Tumor Cells with Improved Dual-Drugs Synergistic Effect. J. Drug Deliv. Sci. Technol. 2019, 53, 101179. [Google Scholar] [CrossRef]
- Luo, S.; Feng, J.X.; Xiao, L.Y.; Guo, L.; Deng, L.; Du, Z.W.; Xue, Y.; Song, X.; Sun, X.; Zhang, Z.R.; et al. Targeting Self-Assembly Peptide for Inhibiting Breast Tumor Progression and Metastasis. Biomaterials 2020, 249, 120055. [Google Scholar] [CrossRef] [PubMed]
- Quinones, J.P.; Jokinen, J.; Keinanen, S.; Covas, C.P.; Bruggemann, O.; Ossipov, D. Self-Assembled Hyaluronic Acid-Testosterone Nanocarriers for Delivery of Anticancer Drugs. Eur. Polym. J. 2018, 99, 384–393. [Google Scholar] [CrossRef]
- Kelkar, S.S.; Hill, T.K.; Marini, F.C.; Mohs, A.M. Near Infrared Fluorescent Nanoparticles Based on Hyaluronic Acid: Self-Assembly, Optical Properties, and Cell Interaction. Acta Biomater. 2016, 36, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Chung, H.; Min, K.H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-Assembled Hyaluronic Acid Nanoparticles for Active Tumor Targeting. Biomaterials 2010, 31, 106–114. [Google Scholar] [CrossRef]
- Thomas, R.G.; Moon, M.; Lee, S.; Jeong, Y.Y. Paclitaxel Loaded Hyaluronic Acid Nanoparticles for Targeted Cancer Therapy: In Vitro and in Vivo Analysis. Int. J. Biol. Macromol. 2015, 72, 510–518. [Google Scholar] [CrossRef]
- Tang, Y.T.; Chen, M.L.; Xie, Q.; Li, L.; Zhu, L.; Ma, Q.J.; Gao, S. Construction and Evaluation of Hyaluronic Acid-Based Copolymers as a Targeted Chemotherapy Drug Carrier for Cancer Therapy. Nanotechnology 2020, 31, 305702. [Google Scholar] [CrossRef]
- Min, H.S.; Son, S.; Lee, T.W.; Koo, H.; Yoon, H.Y.; Na, J.H.; Choi, Y.; Park, J.H.; Lee, J.; Han, M.H.; et al. Liver-Specific and Echogenic Hyaluronic Acid Nanoparticles Facilitating Liver Cancer Discrimination. Adv. Funct. Mater. 2013, 23, 5518–5529. [Google Scholar] [CrossRef]
- Choi, K.Y.; KMin, H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Choi, K.; Jeong, S.Y. Pegylation of Hyaluronic Acid Nanoparticles Improves Tumor Targetability in Vivo. Biomaterials 2011, 32, 1880–1889. [Google Scholar] [CrossRef]
- Choi, K.Y.; Yoon, H.Y.; Kim, J.H.; Bae, S.M.; Park, R.W.; Kang, Y.M.; Kim, I.S.; Kwon, I.C.; Choi, K.; Jeong, S.Y.; et al. Smart Nanocarrier Based on Pegylated Hyaluronic Acid for Cancer Therapy. Acs Nano 2011, 5, 8591–8599. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Jeon, E.J.; Yoon, H.Y.; Lee, B.S.; Na, J.H.; Min, K.H.; Kim, S.Y.; Myung, S.J.; Lee, S.; Chen, X.Y.; et al. Theranostic Nanoparticles Based on Pegylated Hyaluronic Acid for the Diagnosis, Therapy and Monitoring of Colon Cancer. Biomaterials 2012, 33, 6186–6193. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhou, C.M.; Wang, W.P.; Yang, J.H.; Wang, H.; Hong, W.; Huang, Y. Cd44 Receptor Targeting and Endosomal Ph-Sensitive Dual Functional Hyaluronic Acid Micelles for Intracellular Paclitaxel Delivery. Mol. Pharm. 2016, 13, 4209–4221. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huo, M.R.; Wang, J.; Zhou, J.P.; Mohammad, J.M.; Zhang, Y.L.; Zhu, Q.N.; Waddad, A.Y.; Zhang, Q. Redox-Sensitive Micelles Self-Assembled from Amphiphilic Hyaluronic Acid-Deoxycholic Acid Conjugates for Targeted Intracellular Delivery of Paclitaxel. Biomaterials 2012, 33, 2310–2320. [Google Scholar] [CrossRef]
- Li, S.P.; Zhao, W.; Liang, N.; Xu, Y.X.; Kawashima, Y.; Sun, S.P. Multifunctional Micelles Self-Assembled from Hyaluronic Acid Conjugate for Enhancing Anti-Tumor Effect of Paclitaxel. React. Funct. Polym. 2020, 152, 104608. [Google Scholar] [CrossRef]
- Cao, A.C.; Ma, P.Q.; Yang, T.; Lan, Y.; Yu, S.Y.; Liu, L.; Sun, Y.; Liu, Y.H. Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer. Mol. Pharm. 2019, 16, 2502–2510. [Google Scholar] [CrossRef]
- Saadat, E.; Amini, M.; Dinarvand, R.; Dorkoosh, F.A. Polymeric Micelles Based on Hyaluronic Acid and Phospholipids: Design, Characterization, and Cytotoxicity. J. Appl. Polym. Sci. 2014, 131, 40944. [Google Scholar] [CrossRef]
- Dalla Pozza, E.; Lerda, C.; Costanzo, C.; Donadelli, M.; Dando, I.; Zoratti, E.; Scupoli, M.T.; Beghelli, S.; Scarpa, A.; Fattal, E.; et al. Targeting Gemcitabine Containing Liposomes to Cd44 Expressing Pancreatic Adenocarcinoma Cells Causes an Increase in the Antitumoral Activity. Biochim. Et Biophys. Acta-Biomembr. 2013, 1828, 1396–1404. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.Y.; Yu, D.M. Lung Cancer Gene Therapy: Transferrin and Hyaluronic Acid Dual Ligand-Decorated Novel Lipid Carriers for Targeted Gene Delivery. Oncol. Rep. 2017, 37, 937–944. [Google Scholar] [CrossRef]
- Chang, J.E.; Cho, H.J.; Yi, E.; Kim, D.D.; Jheon, S. Hypocrellin B and Paclitaxel-Encapsulated Hyaluronic Acid-Ceramide Nanoparticles for Targeted Photodynamic Therapy in Lung Cancer. J. Photochem. Photobiol. B-Biol. 2016, 158, 113–121. [Google Scholar] [CrossRef]
- Mallick, S.; Park, J.H.; Cho, H.J.; Kim, D.D.; Choi, J.S. Hyaluronic Acid-Ceramide-Based Liposomes for Targeted Gene Delivery to Cd44-Positive Cancer Cells. Bull. Korean Chem. Soc. 2015, 36, 874–881. [Google Scholar]
- Park, J.H.; Cho, H.J.; Yoon, H.Y.; Yoon, I.S.; Ko, S.H.; Shim, J.S.; Cho, J.H.; Park, J.H.; Kim, K.; Kwon, I.C.; et al. Hyaluronic Acid Derivative-Coated Nanohybrid Liposomes for Cancer Imaging and Drug Delivery. J. Control. Release 2014, 174, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Yoon, H.Y.; Koo, H.; Ko, S.H.; Shim, J.S.; Lee, J.H.; Kim, K.; Kwon, I.C.; Kim, D.D. Self-Assembled Nanoparticles Based on Hyaluronic Acid-Ceramide (Ha-Ce) and Pluronic (R) for Tumor-Targeted Delivery of Docetaxel. Biomaterials 2011, 32, 7181–7190. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.D.; Chen, W.L.; Li, W.; Song, J.C.; Gao, Y.; Si, W.H.; Li, X.P.; Cui, B.W.; Yu, T.T. Cd44-Targeted Ph-Responsive Micelles for Enhanced Cellular Internalization and Intracellular on-Demand Release of Doxorubicin. Artif. Cells Nanomed. Biotechnol. 2021, 49, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Cadete, A.; Olivera, A.; Besev, M.; Dhal, P.K.; Goncalves, L.; Almeida, A.J.; Bastiat, G.; Benoit, J.P.; de la Fuente, M.; Garcia-Fuentes, M.; et al. Self-Assembled Hyaluronan Nanocapsules for the Intracellular Delivery of Anticancer Drugs. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid Magnetic Liposome Functionalized with Hyaluronic Acid for Enhanced Cellular Uptake and near-Infrared-Triggered Drug Release. Colloids Surf. B-Biointerfaces 2017, 154, 104–114. [Google Scholar] [CrossRef]
- Gao, D.; Wong, R.C.H.; Wang, Y.; Guo, X.Q.; Yang, Z.; Lo, P.C. Shifting the Absorption to the near-Infrared Region and Inducing a Strong Photothermal Effect by Encapsulating Zinc(Ii) Phthalocyanine in Poly(Lactic-Co-Glycolic Acid)-Hyaluronic Acid Nanoparticles. Acta Biomater. 2020, 116, 329–343. [Google Scholar] [CrossRef]
- Xu, H.P.; Dong, L.; Bin, Z.; Huo, Y.S.; Lin, S.F.; Chang, L.; Chen, C.; Wang, C.L. Supramolecular Self-Assembly of a Hybrid ‘Hyalurosome’ for Targeted Photothermal Therapy in Non-Small Cell Lung Cancer. Drug Deliv. 2020, 27, 378–386. [Google Scholar] [CrossRef]
- Jeong, G.W.; Jeong, Y.I.; Nah, J.W. Triggered Doxorubicin Release Using Redox-Sensitive Hyaluronic Acid-G-Stearic Acid Micelles for Targeted Cancer Therapy. Carbohydr. Polym. 2019, 209, 161–171. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Teixeira, R.; Novoa-Carballal, R.; Pires, R.A.; Reis, R.L.; Pashkuleva, I. Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for Cd44 Targeted Drug Delivery. Biomacromolecules 2018, 19, 2991–2999. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liang, N.; Li, S.P.; Han, Y.; Yan, P.F.; Kawashima, Y.; Cui, F.D.; Sun, S.P. Tumor-Targeting and Redox-Sensitive Micelles Based on Hyaluronic Acid Conjugate for Delivery of Paclitaxel. J. Biomater. Appl. 2020, 34, 1458–1469. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Q.; Lian, S.N.; Sun, J.F.; Liu, Z.L.; Zhao, F.; Jiang, Y.T.; Gao, M.M.; Sun, K.X.; Liu, W.H.; Fu, F.H. Design of Novel Multifunctional Targeting Nano-Carrier Drug Delivery System Based on Cd44 Receptor and Tumor Microenvironment Ph Condition. Drug Deliv. 2016, 23, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Q.; Sun, J.F.; Lian, S.N.; Liu, Z.L.; Sun, K.X.; Liu, W.H.; Wu, Z.M.; Zhang, Q. Dual Ph-Responsive and Cd44 Receptor Targeted Multifunctional Nanoparticles for Anticancer Intracellular Delivery. J. Nanoparticle Res. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Chen, D.Q.; XSong, Y.; Wang, K.L.; Guo, C.J.; Yu, Y.M.; Fan, H.Y.; Zhao, F. Design and Evaluation of Dual Cd44 Receptor and Folate Receptor-Targeting Double-Smart Ph-Response Multifunctional Nanocarrier. J. Nanoparticle Res. 2017, 19, 1–11. [Google Scholar] [CrossRef]
- Drescher, S.; van Hoogevest, P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020, 12, 1235. [Google Scholar] [CrossRef]
- Alrbyawi, H.; Poudel, I.; Dash, R.P.; Srinivas, N.R.; Tiwari, A.K.; Arnold, R.D.; Babu, R.J. Role of Ceramides in Drug Delivery. Aaps Pharmscitech 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Ekrami, H.M.; Kennedy, A.R.; Shen, W.C. Water-Soluble Fatty-Acid Derivatives as Acylating Agents for Reversible Lipidization of Polypeptides. Febs Lett. 1995, 371, 283–286. [Google Scholar]
- Hill, T.K.; Abdulahad, A.; Kelkar, S.S.; Marini, F.C.; Long, T.E.; Provenzale, J.M.; Mohs, A.M. Indocyanine Green-Loaded Nanoparticles for Image-Guided Tumor Surgery. Bioconjugate Chem. 2015, 26, 294–303. [Google Scholar] [CrossRef]
- Hill, T.K.; Davis, A.L.; Wheeler, F.B.; Kelkar, S.S.; Freund, E.C.; Lowther, W.T.; Kridel, S.J.; Mohs, A.M. Development of a Self-Assembled Nanoparticle Formulation of Orlistat, Nano-Orl, with Increased Cytotoxicity against Human Tumor Cell Lines. Mol. Pharm. 2016, 13, 720–728. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chung, S.J.; Cho, H.J.; Kim, D.D. Iodinated Hyaluronic Acid Oligomer-Based Nanoassemblies for Tumor-Targeted Drug Delivery and Cancer Imaging. Biomaterials 2016, 85, 218–231. [Google Scholar] [CrossRef]
- Wang, G.H.; Gao, S.; Tian, R.; Miller-Kleinhenz, J.; Qin, Z.N.; Liu, T.J.; Li, L.; Zhang, F.; Ma, Q.J.; Zhu, L. Theranostic Hyaluronic Acid-Iron Micellar Nanoparticles for Magnetic-Field-Enhanced Invivo Cancer Chemotherapy. Chemmedchem 2018, 13, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Feng, Y.C.; Gao, K.; Shi, X.J.; Zhao, X.B. Fabrication of Hyaluronic Acid-Based Micelles with Glutathione-Responsiveness for Targeted Anticancer Drug Delivery. J. Colloid Interface Sci. 2022, 606, 1586–1596. [Google Scholar] [CrossRef]
- Debele, T.A.; Yu, L.Y.; Yang, C.S.; Shen, Y.A.; Lo, C.L. Ph- and Gsh-Sensitive Hyaluronic Acid-Mp Conjugate Micelles for Intracellular Delivery of Doxorubicin to Colon Cancer Cells and Cancer Stem Cells. Biomacromolecules 2018, 19, 3725–3737. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.; Assaraf, Y.G.; Levitzky, I.; Shahar, T.; Livney, Y.D. Hyaluronic Acid-Serum Albumin Conjugate-Based Nanoparticles for Targeted Cancer Therapy. Oncotarget 2017, 8, 24337–24353. [Google Scholar] [CrossRef] [PubMed]
- Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Nicoletta, F.P.; Leggio, A.; Iemma, F. Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics 2021, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, K.K.; Bhatt, A.N.; Mishra, A.K.; Dwarakanath, B.S.; Jain, S.; Schatz, C.; le Meins, J.F.; Farooque, A.; Chandraiah, G.; Jain, A.K.; et al. The Intracellular Drug Delivery and Anti Tumor Activity of Doxorubicin Loaded Poly(Gamma-Benzyl L-Glutamate)-B-Hyaluronan Polymersomes. Biomaterials 2010, 31, 2882–2892. [Google Scholar] [CrossRef]
- Jeannot, V.; Mazzaferro, S.; Lavaud, J.; Vanwonterghem, L.; Henry, M.; Arboleas, M.; Vollaire, J.; Josserand, V.; Coll, J.L.; Lecommandoux, S.; et al. Targeting Cd44 Receptor-Positive Lung Tumors Using Polysaccharide-Based Nanocarriers: Influence of Nanoparticle Size and Administration Route. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 921–932. [Google Scholar] [CrossRef]
- Jeannot, V.; Gauche, C.; Mazzaferro, S.; Couvet, M.; Vanwonterghem, L.; Henry, M.; Didier, C.; Vollaire, J.; Josserand, V.; Coll, J.L.; et al. Anti-Tumor Efficacy of Hyaluronan-Based Nanoparticles for the Co-Delivery of Drugs in Lung Cancer. J. Control. Release 2018, 275, 117–128. [Google Scholar] [CrossRef]
- Yang, H.K.; Miao, Y.L.; Chen, L.P.; Li, Z.R.; Yang, R.M.; Xu, X.D.; Liu, Z.S.; Zhang, L.M.; Jiang, X.Q. Redox-Responsive Nanoparticles from Disulfide Bond-Linked Poly-(N-Epsilon-Carbobenzyloxy-L-Lysine)-Grafted Hyaluronan Copolymers as Theranostic Nanoparticles for Tumor-Targeted Mri and Chemotherapy. Int. J. Biol. Macromol. 2020, 148, 483–492. [Google Scholar] [CrossRef]
- Lee, C.S.; Na, K. Photochemically Triggered Cytosolic Drug Delivery Using Ph-Responsive Hyaluronic Acid Nanoparticles for Light-Induced Cancer Therapy. Biomacromolecules 2014, 15, 4228–4238. [Google Scholar] [CrossRef]
- Jo, Y.U.; Lee, C.B.; Bae, S.K.; Na, K. Acetylated Hyaluronic Acid-Poly(L-Lactic Acid) Conjugate Nanoparticles for Inhibition of Doxorubicinol Production from Doxorubicin. Macromol. Res. 2020, 28, 67–73. [Google Scholar] [CrossRef]
- Jeong, Y.I.; Kim, D.H.; Chung, C.W.; Yoo, J.J.; Choi, K.H.; Kim, C.H.; Ha, S.H.; Kang, D.H. Self-Assembled Nanoparticles of Hyaluronic Acid/Poly(Dl-Lactide-Co-Glycolide) Block Copolymer. Colloids Surf. B-Biointerfaces 2012, 90, 28–35. [Google Scholar] [CrossRef]
- Huang, J.B.; Zhang, H.; Yu, Y.; Chen, Y.; Wang, D.; Zhang, G.Q.; Zhou, G.C.; Liu, J.J.; Sun, Z.G.; Sun, D.X.; et al. Biodegradable Self-Assembled Nanoparticles of Poly (D,L-Lactide-Co-Glycolide)/Hyaluronic Acid Block Copolymers for Target Delivery of Docetaxel to Breast Cancer. Biomaterials 2014, 35, 550–566. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wang, J.B.; Li, J.J.; Huang, H.X.; Sun, X.Y.; Lv, Y.Y. Development and Evaluation of Hyaluronic Acid-Based Polymeric Micelles for Targeted Delivery of Photosensitizer for Photodynamic Therapy in Vitro. J. Drug Deliv. Sci. Technol. 2018, 48, 414–421. [Google Scholar] [CrossRef]
- Wang, X.X.; Cheng, R.; Zhong, Z.Y. Facile Fabrication of Robust, Hyaluronic Acid-Surfaced and Disulfide-Crosslinked Plga Nanoparticles for Tumor-Targeted and Reduction-Triggered Release of Docetaxel. Acta Biomater. 2021, 125, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Gote, V.; Sharma, A.D.; Pal, D. Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 1257. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, Y.Y.; Hao, L.K.; Yang, Y.; Gao, Y.; Zhang, N.N.; Zhang, X.C.; Song, Y.M. Cd44/Folate Dual Targeting Receptor Reductive Response Plga-Based Micelles for Cancer Therapy. Front. Pharmacol. 2022, 13, 829590. [Google Scholar] [CrossRef]
- Debele, T.A.; Wu, P.C.; Wei, Y.F.; Chuang, J.Y.; Chang, K.Y.; Tsai, J.H.; Su, W.P. Transferrin Modified Gsh Sensitive Hyaluronic Acid Derivative Micelle to Deliver Hsp90 Inhibitors to Enhance the Therapeutic Efficacy of Brain Cancers. Cancers 2021, 13, 2375. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhao, W.Z.; Fan, J.Z.; Jia, L.C.; Lu, Y.N.; Zeng, L.H.; Lv, Y.Y.; Sun, X.Y. Tumor Tropic Delivery of Hyaluronic Acid-Poly (D,L-Lactide-Co-Glycolide) Polymeric Micelles Using Mesenchymal Stem Cells for Glioma Therapy. Molecules 2022, 27, 2419. [Google Scholar] [CrossRef]
- Yang, H.K.; Wang, N.H.; Mo, L.; Wu, M.; Yang, R.M.; Xu, X.D.; Huang, Y.G.; Lin, J.T.; Zhang, L.M.; Jiang, X.Q. Reduction Sensitive Hyaluronan-Ss-Poly(E-Caprolactone) Block Copolymers as Theranostic Nanocarriers for Tumor Diagnosis and Treatment. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 98, 9–18. [Google Scholar] [CrossRef]
- Chen, S.C.; Yang, M.H.; Chung, T.W.; Jhuang, T.S.; Yang, J.D.; Chen, K.C.; Chen, W.J.; Huang, Y.F.; Jong, S.B.; Tsai, W.C.; et al. Preparation and Characterization of Hyaluronic Acid-Polycaprolactone Copolymer Micelles for the Drug Delivery of Radioactive Iodine-131 Labeled Lipiodol. Biomed. Res. Int. 2017, 2017, 4051763. [Google Scholar] [CrossRef] [PubMed]
- Youm, I.; Agrahari, V.; Murowchick, J.B.; Youan, B.B.C. Uptake and Cytotoxicity of Docetaxel-Loaded Hyaluronic Acid-Grafted Oily Core Nanocapsules in Mda-Mb 231 Cancer Cells. Pharm. Res. 2014, 31, 2439–2452. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Thambi, T.; Choi, K.Y.; Son, S.; Ko, H.; Lee, M.C.; Jo, D.G.; Chae, Y.S.; Kang, Y.M.; Lee, J.Y.; et al. Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules 2015, 16, 447–456. [Google Scholar] [CrossRef]
- Han, H.S.; Choi, K.Y.; Ko, H.; Jeon, J.; Saravanakumar, G.; Suh, Y.D.; Lee, D.S.; Park, J.H. Bioreducible Core-Crosslinked Hyaluronic Acid Micelle for Targeted Cancer Therapy. J. Control. Release 2015, 200, 158–166. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Zhang, J.; Meng, F.H.; Cheng, L.; Feijen, J.; Zhong, Z.Y. Reduction-Responsive Core-Crosslinked Hyaluronic Acid-B-Poly(Trimethylene Carbonate-Co-Dithiolane Trimethylene Carbonate) Micelles: Synthesis and Cd44-Mediated Potent Delivery of Docetaxel to Triple Negative Breast Tumor in Vivo. J. Mater. Chem. B 2018, 6, 3040–3047. [Google Scholar] [CrossRef]
- Huang, K.; He, Y.H.; Zhu, Z.H.; Guo, J.K.; Wang, G.L.; Deng, C.; Zhong, Z.Y. Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated Via Microfluidics for Cd44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. Acs Appl. Mater. Interfaces 2019, 11, 22171–22180. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Wu, M.; Veroniaina, H.; Mukhopadhyay, S.; Li, J.Q.; Wu, Z.H.; Wu, Z.H.; Qi, X.L. Poly(N-Isopropylacrylamide) Derived Nanogels Demonstrated Thermosensitive Self-Assembly and Gsh-Triggered Drug Release for Efficient Tumor Therapy. Polym. Chem. 2019, 10, 4031–4041. [Google Scholar] [CrossRef]
- Jing, J.; Alaimo, D.; de Vlieghere, E.; Jerome, C.; de Wever, O.; de Geest, B.G.; Auzely-Velty, R. Tunable Self-Assembled Nanogels Composed of Well-Defined Thermoresponsive Hyaluronic Acid-Polymer Conjugates. J. Mater. Chem. B 2013, 1, 3883–3887. [Google Scholar] [CrossRef]
- Stefanello, T.F.; Couturaud, B.; Szarpak-Jankowska, A.; Fournier, D.; Louage, B.; Garcia, F.P.; Nakamura, C.V.; de Geest, B.G.; Woisel, P.; van der Sanden, B.; et al. Coumarin-Containing Thermoresponsive Hyaluronic Acid-Based Nanogels as Delivery Systems for Anticancer Chemotherapy. Nanoscale 2017, 9, 12150–12162. [Google Scholar] [CrossRef]
- Ganesh, S.; Iyer, A.K.; Morrissey, D.V.; Amiji, M.M. Hyaluronic Acid Based Self-Assembling Nanosystems for Cd44 Target Mediated Sirna Delivery to Solid Tumors. Biomaterials 2013, 34, 3489–3502. [Google Scholar] [CrossRef]
- Ganesh, S.; Iyer, A.K.; Gattacceca, F.; Morrissey, D.V.; Amiji, M.M. In Vivo Biodistribution of Sirna and Cisplatin Administered Using Cd44-Targeted Hyaluronic Acid Nanoparticles. J. Control. Release 2013, 172, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Park, K.; Kim, J.; Kim, K.S.; Oh, E.J.; Kang, H.G.; Han, S.E.; Oh, Y.K.; Park, T.G.; Hahn, S.K. Hyaluronic Acid-Polyethyleneimine Conjugate for Target Specific Intracellular Delivery of Sirna. Biopolymers 2008, 89, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhao, F.; Zhang, D.H.; Li, J. Hyaluronic Acid Conjugated Beta-Cyclodextrin-Oligoethylenimine Star Polymer for Cd44-Targeted Gene Delivery. Int. J. Pharm. 2015, 483, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Rahimizadeh, P.; Yang, S.; Lim, S.I. Albumin: An Emerging Opportunity in Drug Delivery. Biotechnol. Bioprocess Eng. 2020, 25, 985–995. [Google Scholar] [CrossRef]
- Shen, X.; Li, T.T.; Xie, X.X.; Feng, Y.; Chen, Z.Y.; Yang, H.; Wu, C.H.; Deng, S.Q.; Liu, Y.Y. Plga-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications. Front. Bioeng. Biotechnol. 2020, 8, 381. [Google Scholar] [CrossRef]
- Rai, A.; Senapati, S.; Saraf, S.K.; Maiti, P. Biodegradable Poly(Epsilon-Caprolactone) as a Controlled Drug Delivery Vehicle of Vancomycin for the Treatment of Mrsa Infection. J. Mater. Chem. B 2016, 4, 5151–5160. [Google Scholar] [CrossRef]
- Sharma, A.; Raghunathan, K.; Solhaug, H.; Antony, J.; Stenvik, J.; Nilsen, A.M.; Einarsrud, M.A.; Bandyopadhyay, S. Modulating Acrylic Acid Content of Nanogels for Drug Delivery & Biocompatibility Studies. J. Colloid Interface Sci. 2022, 607, 76–88. [Google Scholar]
- Chen, Y.; Liu, Y. Cyclodextrin-Based Bioactive Supramolecular Assemblies. Chem. Soc. Rev. 2010, 39, 495–505. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.M.; Liu, Y. Multidimensional Nanoarchitectures Based on Cyclodextrins. Chem. Commun. 2010, 46, 5622–5633. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.P.; Chen, D.; Liu, C.F.; Zhuo, L.H.; Li, H.; Wang, C.; Bu, H.T.; Tian, W. Beta-Cyclodextrin-Modified Hyaluronic Acid-Based Supramolecular Self-Assemblies for Ph- and Esterase-Dual-Responsive Drug Delivery. Carbohydr. Polym. 2020, 246, 116654. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Polysaccharide-Based Noncovalent Assembly for Targeted Delivery of Taxol. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; ZZeng, S.; Chen, J.; Huang, B.Y.; Guan, Z.L.; Huang, Y.J.; Huang, Z.Q.; Zhao, C.S. Tumor-Targeted Supramolecular Catalytic Nanoreactor for Synergistic Chemo/Chemodynamic Therapy Via Oxidative Stress Amplification and Cascaded Fenton Reaction. Chem. Eng. J. 2020, 390, 124628. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Yu, Q.L.; Li, F.Q.; Liu, Y. A Cucurbituril/ Polysaccharide/ Carbazole Ternary Supramolecular Assembly for Targeted Cell Imaging. Chem. Commun. 2019, 55, 4343–4346. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Q.; Yu, Q.L.; Liu, Y.H.; Yu, H.J.; Chen, Y.; Liu, Y. Highly Efficient Photocontrolled Targeted Delivery of Sirna by a Cyclodextrin-Based Supramolecular Nanoassembly. Chem. Commun. 2020, 56, 3907–3910. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Targeted Polysaccharide Nanoparticle for Adamplatin Prodrug Delivery. J. Med. Chem. 2013, 56, 9725–9736. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ju, X.; Wang, L.; Ding, L.S.; Liu, G.T.; Zhang, S.; Li, B.J. Ph and Glutathione Dual-Triggered Supramolecular Assemblies as Synergistic and Controlled Drug Release Carriers. Polym. Chem. 2017, 8, 7260–7270. [Google Scholar] [CrossRef]
- Wang, H.H.; Sun, D.S.; Liao, H.; Wang, Y.F.; Zhao, S.; Zhang, Y.; Lv, G.J.; Ma, X.J.; Liu, Y.; Sun, G.W. Synthesis and Characterization of a Bimodal Nanoparticle Based on the Host-Guest Self-Assembly for Targeted Cellular Imaging. Talanta 2017, 171, 8–15. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, Y.; Dai, X.Y.; Li, J.J.; Jia, S.S.; Wang, S.P.; Liu, Y. Multicharge Beta-Cyclodextrin Supramolecular Assembly for Atp Capture and Drug Release. Chem. Commun. 2021, 57, 2812–2815. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Sun, M.; Wu, X.J.; Liu, Y. Construction and Drug Delivery of a Fluorescent Tpe-Bridged Cyclodextrin/Hyaluronic Acid Supramolecular Assembly. Rsc Adv. 2016, 6, 50673–50679. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Li, D.Z.; Sun, H.L.; Fan, H.X.; Liu, Y. Camptothecin-Polysaccharide Co-Assembly and Its Controlled Release. Bioconjugate Chem. 2016, 27, 2834–2838. [Google Scholar]
- Badwaik, V.; Liu, L.J.; Gunasekera, D.; Kulkarni, A.; Thompson, D.H. Mechanistic Insight into Receptor-Mediated Delivery of Cationic-Beta-Cyclodextrin:Hyaluronic Acid-Adamantamethamidyl Host:Guest Pdna Nanoparticles to Cd44(+) Cells. Mol. Pharm. 2016, 13, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.Y.; Dong, X.Y.; Liu, Z.X.; Liu, G.X.; Liu, Y. Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy. Biomacromolecules 2020, 21, 5369–5379. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.Y.; Zhang, B.; Zhou, W.L.; Liu, Y. High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy. Biomacromolecules 2020, 21, 4998–5007. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ko, S.H.; Shim, J.S.; Kim, D.D.; Cho, H.J. Tumor Targeting and Lipid Rafts Disrupting Hyaluronic Acid-Cyclodextrin-Based Nanoassembled Structure for Cancer Therapy. Acs Appl. Mater. Interfaces 2018, 10, 36628–36640. [Google Scholar] [CrossRef] [PubMed]
- Elamin, K.M.; Yamashita, Y.; Higashi, T.; Motoyama, K.; Arima, H. Supramolecular Complex of Methyl-Beta-Cyclodextrin with Adamantane-Grafted Hyaluronic Acid as a Novel Antitumor Agent. Chem. Pharm. Bull. 2018, 66, 277–285. [Google Scholar] [CrossRef]
- Elamin, K.M.; Motoyama; Higashi, T.; Yamashita, Y.; Tokuda, A.; Arima, H. Dual Targeting System by Supramolecular Complex of Folate-Conjugated Methyl-Beta-Cyclodextrin with Adamantane-Grafted Hyaluronic Acid for the Treatment of Colorectal Cancer. Int. J. Biol. Macromol. 2018, 113, 386–394. [Google Scholar] [CrossRef]
- Yang, K.K.; Yang, Z.Q.; Yu, G.C.; Nie, Z.H.; Wang, R.B.; Chen, X.Y. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Adv. Mater. 2022, 34, 2107434. [Google Scholar] [CrossRef]
- Duncan, R. Polymer Conjugates as Anticancer Nanomedicines. Nat. Rev. Cancer 2006, 6, 688–701. [Google Scholar] [CrossRef]
- Haag, R.; Kratz, F. Polymer Therapeutics: Concepts and Applications. Angew. Chem. Int. Ed. 2006, 45, 1198–1215. [Google Scholar] [CrossRef]
- Hoste, K.; de Winne, K.; Schacht, E. Polymeric Prodrugs. Int. J. Pharm. 2004, 277, 119–131. [Google Scholar] [CrossRef]
- Hu, C.; WZhuang, H.; Yu, T.; Chen, L.; Liang, Z.; Li, G.C.; Wang, Y.B. Multi-Stimuli Responsive Polymeric Prodrug Micelles for Combined Chemotherapy and Photodynamic Therapy. J. Mater. Chem. B 2020, 8, 5267–5279. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xu, F.S.; Peng, H.L.; Luo, Y.H.; Tian, X.H.; Battaglia, G.; Zhang, H.; Gong, Q.Y.; Gu, Z.W.; Luo, K. Stimuli-Responsive Polymeric Prodrug-Based Nanomedicine Delivering Nifuroxazide and Doxorubicin against Primary Breast Cancer and Pulmonary Metastasis. J. Control. Release 2020, 318, 124–135. [Google Scholar] [CrossRef]
- Luo, X.L.; Wang, S.C.; Xu, S.S.; Lang, M.D. Relevance of the Polymeric Prodrug and Its Drug Loading Efficiency: Comparison between Computer Simulation and Experiment. Macromol. Theory Simul. 2019, 28, 1900026. [Google Scholar] [CrossRef]
- Fu, S.W.; Li, G.T.; Zang, W.L.; Zhou, X.Y.; Shi, K.X.; Zhai, Y.L. Pure Drug Nano-Assemblies: A Facile Carrier-Free Nanoplatform for Efficient Cancer Therapy. Acta Pharm. Sin. B 2022, 12, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.R.; Chen, J.W.; Little, N.; Lu, J.Q. Self-Assembling Prodrug Nanotherapeutics for Synergistic Tumor Targeted Drug Delivery. Acta Biomater. 2020, 111, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.R.; He, W.; Lv, Y.Q.; Qin, C.; Shen, L.J.; Yin, L.F. Self-Assembled Nanoparticles from Hyaluronic Acid-Paclitaxel Prodrugs for Direct Cytosolic Delivery and Enhanced Antitumor Activity. Int. J. Pharm. 2015, 493, 172–181. [Google Scholar] [CrossRef]
- Xin, D.C.; Wang, Y.; Xiang, J.N. The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and in Vitro Efficiency. Pharm. Res. 2010, 27, 380–389. [Google Scholar] [CrossRef]
- Zhong, Y.N.; Goltsche, K.; Cheng, L.; Xie, F.; Meng, F.H.; Deng, C.; Zhong, Z.Y.; Haag, R. Hyaluronic Acid-Shelled Acid-Activatable Paclitaxel Prodrug Micelles Effectively Target and Treat Cd44-Overexpressing Human Breast Tumor Xenografts in Vivo. Biomaterials 2016, 84, 250–261. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhang, X.Q.; Li, Z.Q.; Pan, D.Y.; Zhu, H.Y.; Gu, Z.W.; Chen, J.; Zhang, H.; Gong, Q.Y.; Luo, K. Dendronized Hyaluronic Acid-Docetaxel Conjugate as a Stimuli-Responsive Nano-Agent for Breast Cancer Therapy. Carbohydr. Polym. 2021, 267, 118160. [Google Scholar] [CrossRef]
- Cai, S.A.; Thati, S.; Bagby, T.R.; Diab, H.M.; Davies, N.M.; Cohen, M.S.; Forrest, M.L. Localized Doxorubicin Chemotherapy with a Biopolymeric Nanocarrier Improves Survival and Reduces Toxicity in Xenografts of Human Breast Cancer. J. Control. Release 2010, 146, 212–218. [Google Scholar] [CrossRef]
- Yin, T.J.; Wang, Y.Y.; Chu, X.X.; Fu, Y.; Wang, L.; Zhou, J.P.; Tang, X.M.; Liu, J.Y.; Huo, M.R. Free Adriamycin-Loaded Ph/Reduction Dual-Responsive Hyaluronic Acid-Adriamycin Prodrug Micelles for Efficient Cancer Therapy. Acs Appl. Mater. Interfaces 2018, 10, 35693–35704. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.H.; Qian, J.M.; Suo, A.L.; Wang, H.J.; Yong, X.Q.; Liu, X.F.; Liu, R.R. Reduction/Ph Dual-Sensitive Pegylated Hyaluronan Nanoparticles for Targeted Doxorubicin Delivery. Carbohydr. Polym. 2013, 98, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.B.; Xiao, F.; Wang, Z.Y.; Wang, B.S.; Pan, Z.C.; Zhao, W.W.; Zhu, Z.Y.; Zhang, J.H. Redox-Sensitive Hyaluronic Acid Polymer Prodrug Nanoparticles for Enhancing Intracellular Drug Self-Delivery and Targeted Cancer Therapy. Acs Biomater. Sci. Eng. 2020, 6, 4106–4115. [Google Scholar] [CrossRef]
- Song, L.; Pan, Z.; Zhang, H.B.; Li, Y.X.; Zhang, Y.Y.; Lin, J.Y.; Su, G.H.; Ye, S.F.; Xie, L.Y.; Li, Y.; et al. Dually Folate/Cd44 Receptor-Targeted Self-Assembled Hyaluronic Acid Nanoparticles for Dual-Drug Delivery and Combination Cancer Therapy. J. Mater. Chem. B 2017, 5, 6835–6846. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Li, Y.; Tian, H.N.; Zhu, Q.X.; Wang, F.F.; Fan, Z.X.; Zhou, S.; Wang, X.W.; Xie, L.Y.; Hou, Z.Q. Redox-Responsive and Dual-Targeting Hyaluronic Acid-Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Mol. Pharm. 2019, 16, 3133–3144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; He, N.; Chen, M.H.; Zhao, L.; Li, X.H. Tunable Conjugation Densities of Camptothecin on Hyaluronic Acid for Tumor Targeting and Reduction-Triggered Release. Acta Biomater. 2016, 43, 195–207. [Google Scholar] [CrossRef]
- Chen, Z.J.; Liu, W.P.; Zhao, L.; Xie, S.Z.; Chen, M.H.; Wang, T.; Li, X.H. Acid-Labile Degradation of Injectable Fiber Fragments to Release Bioreducible Micelles for Targeted Cancer Therapy. Biomacromolecules 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zeng, X.L.; Wang, H.R.; Fan, R.N.; Hu, Y.K.; Hu, X.J.; Li, J. Dasatinib Self-Assembled Nanoparticles Decorated with Hyaluronic Acid for Targeted Treatment of Tumors to Overcome Multidrug Resistance. Drug Deliv. 2021, 28, 670–679. [Google Scholar] [CrossRef]
- Liang, D.S.; Su, H.T.; Liu, Y.J.; Wang, A.T.; Qi, X.R. Tumor-Specific Penetrating Peptides-Functionalized Hyaluronic Acid-D-Alpha-Tocopheryl Succinate Based Nanoparticles for Multi-Task Delivery to Invasive Cancers. Biomaterials 2015, 71, 11–23. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, Y.; Wang, L.F.; Wang, X.H.; Tu, P.F. Comparison of Hyaluronic Acid-Based Micelles and Polyethylene Glycol-Based Micelles on Reversal of Multidrug Resistance and Enhanced Anticancer Efficacy in Vitro and in Vivo. Drug Deliv. 2018, 25, 330–340. [Google Scholar] [CrossRef]
- Wang, H.R.; Zhang, Y.W.; Zeng, X.L.; Pei, W.J.; Fan, R.R.; Wang, Y.S.; Wang, X.; Li, J.C. A Combined Self-Assembled Drug Delivery for Effective Anti-Breast Cancer Therapy. Int. J. Nanomed. 2021, 16, 2373–2388. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Ma, W.Z.; Guo, Q.; Li, Y.; Hu, Z.D.; Zhu, Z.X.; Wang, X.H.; Zhao, Y.F.; Chai, X.Y.; Tu, P.F. The Effect of Dual-Functional Hyaluronic Acid-Vitamin E Succinate Micelles on Targeting Delivery of Doxorubicin. Int. J. Nanomed. 2016, 11, 5851–5870. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Z.; Guo, Q.; Li, Y.; Wang, X.H.; Wang, J.L.; Tu, P.F. Co-Assembly of Doxorubicin and Curcumin Targeted Micelles for Synergistic Delivery and Improving Anti-Tumor Efficacy. Eur. J. Pharm. Biopharm. 2017, 112, 209–223. [Google Scholar] [CrossRef]
- Zhou, C.P.; Dong, X.X.; Song, C.X.; Cui, S.; Chen, T.T.; Zhang, D.J.; Zhao, X.L.; Yang, C.R. Rational Design of Hyaluronic Acid-Based Copolymer-Mixed Micelle in Combination Pd-L1 Immune Checkpoint Blockade for Enhanced Chemo-Immunotherapy of Melanoma. Front. Bioeng. Biotechnol. 2021, 9, 653417. [Google Scholar] [CrossRef]
- Bai, F.; Wang, Y.; Han, Q.Q.; Wu, M.L.; Luo, Q.; Zhang, H.M.; Wang, Y.Q. Cross-Linking of Hyaluronic Acid by Curcumin Analogue to Construct Nanomicelles for Delivering Anticancer Drug. J. Mol. Liq. 2019, 288, 111079. [Google Scholar] [CrossRef]
- Xu, C.F.; Ding, Y.; Ni, J.; Yin, L.F.; Zhou, J.P.; Yao, J. Tumor-Targeted Docetaxel-Loaded Hyaluronic Acid-Quercetin Polymeric Micelles with P-Gp Inhibitory Property for Hepatic Cancer Therapy. Rsc Adv. 2016, 6, 27542–27556. [Google Scholar] [CrossRef]
- Bae, K.H.; Tan, S.S.; Yamashita, A.; Ang, W.X.; Gao, S.J.; Wang, S.; Chung, J.E.; Kurisawa, M. Hyaluronic Acid-Green Tea Catechin Micellar Nanocomplexes: Fail-Safe Cisplatin Nanomedicine for the Treatment of Ovarian Cancer without Off-Target Toxicity. Biomaterials 2017, 148, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J.E.; Lee, S.S.; Kurisawa, M. Targeted Intracellular Protein Delivery Based on Hyaluronic Acid-Green Tea Catechin Nanogels. Acta Biomater. 2016, 33, 142–152. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, J.; Zhou, J.P.; Wang, T.; Zhang, Q. Glycyrrhetinic Acid-Graft-Hyaluronic Acid Conjugate as a Carrier for Synergistic Targeted Delivery of Antitumor Drugs. Int. J. Pharm. 2013, 441, 654–664. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.P.; Yao, J. Improved Anti-Tumor Activity and Safety Profile of a Paclitaxel-Loaded Glycyrrhetinic Acid-Graft-Hyaluronic Acid Conjugate as a Synergistically Targeted Drug Delivery System. Chin. J. Nat. Med. 2015, 13, 915–924. [Google Scholar] [CrossRef]
- Lin, T.S.; Yuan, A.; Zhao, X.Z.; Lian, H.B.; Zhuang, J.L.; Chen, W.; Zhang, Q.; Liu, G.X.; Zhang, S.W.; Chen, W.; et al. Self-Assembled Tumor-Targeting Hyaluronic Acid Nanoparticles for Photothermal Ablation in Orthotopic Bladder Cancer. Acta Biomater. 2017, 53, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.X.; Sun, W.C.; Liu, C.B.; Gu, G.Y.; Ma, B.; Si, W.L.; Fu, N.N.; Zhang, Q.; Huang, W.; Dong, X.C. Tumor-Targeting, Enzyme-Activated Nanoparticles for Simultaneous Cancer Diagnosis and Photodynamic Therapy. J. Mater. Chem. B 2016, 4, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Chen, L.; Lu, Y.L.; Liu, J.; Liang, S.J.; Lin, Y.; Li, Y.Y.; Dong, C.Y. Programmable Ce6 Delivery Via Cyclopamine Based Tumor Microenvironment Modulating Nano-System for Enhanced Photodynamic Therapy in Breast Cancer. Front. Chem. 2019, 7, 853. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, Y.L.; Yang, X.M.; Tian, C.Y.; Yan, Y.S.; Zhang, H.L.; Shi, J.J.; Zhang, H.J.; Zhang, Z.Z. Intracellular No-Generator Based on Enzyme Trigger for Localized Tumor-Cytoplasm Rapid Drug Release and Synergetic Cancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 255–268. [Google Scholar] [CrossRef]
- Montanari, E.; Capece, S.; di Meo, C.; Meringolo, M.; Coviello, T.; Agostinelli, E.; Matricardi, P. Hyaluronic Acid Nanohydrogels as a Useful Tool for Bsao Immobilization in the Treatment of Melanoma Cancer Cells. Macromol. Biosci. 2013, 13, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, W.J.; Han, X.; Qu, F.L.; Xia, L.; Kong, R.M. A Label-Free and Fluorescence Turn-on Assay for Sensitive Detection of Hyaluronidase Based on Hyaluronan-Induced Perylene Self-Assembly. N. J. Chem. 2019, 43, 3383–3389. [Google Scholar] [CrossRef]
- Noguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. Emergent Molecular Recognition through Self-Assembly: Unexpected Selectivity for Hyaluronic Acid among Glycosaminoglycans. Angew. Chem. Int. Ed. 2016, 55, 5708–5712. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yoon, H.Y.; Shin, J.M.; Saravanakumar, G.; Noh, K.H.; Song, K.H.; Jeon, J.H.; Kim, D.W.; Lee, K.M.; Kim, K.; et al. A Polymeric Conjugate Foreignizing Tumor Cells for Targeted Immunotherapy in Vivo. J. Control. Release 2015, 199, 98–105. [Google Scholar] [CrossRef]
- Shin, J.M.; Oh, S.J.; Kwon, S.; Deepagan, V.G.; Lee, M.; Song, S.H.; Lee, H.J.; Kim, S.; Song, K.H.; Kim, T.W.; et al. A Pegylated Hyaluronic Acid Conjugate for Targeted Cancer Immunotherapy. J. Control. Release 2017, 267, 181–190. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Vaidya, F.U.; Chhipa, A.S.; Mishra, V.; Gupta, V.K.; Rawat, S.G.; Kumar, A.; Pathak, C. Molecular and Cellular Paradigms of Multidrug Resistance in Cancer. Cancer Rep. 2020, e1291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, E.G.; Cui, Y.N.; Huang, Y.Z. Nanotechnology-Based Combination Therapy for Overcoming Multidrug-Resistant Cancer. Cancer Biol. Med. 2017, 14, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Zhou, X.M.; Zhang, H.Y.; Han, X.L.; Li, B.J.; Yang, R.; Zhou, X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front. Pharmacol. 2022, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Curcio, M.; Farfalla, A.; Saletta, F.; Valli, E.; Pantuso, E.; Nicoletta, F.P.; Iemma, F.; Vittorio, O.; Cirillo, G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020, 25, 2102. [Google Scholar] [CrossRef]
- Xue, X.; Liang, X.J. Overcoming Drug Efflux-Based Multidrug Resistance in Cancer with Nanotechnology. Chin. J. Cancer 2012, 31, 100–109. [Google Scholar] [CrossRef]
- Wang, C.D.; Li, F.S.; Zhang, T.A.; Yu, M.; Sun, Y. Recent Advances in Anti-Multidrug Resistance for Nano-Drug Delivery System. Drug Deliv. 2022, 29, 1684–1697. [Google Scholar] [CrossRef]
- Yan, H.X.; Du, X.Y.; Wang, R.J.; Zhai, G.X. Progress in the Study of D-Alpha-Tocopherol Polyethylene Glycol 1000 Succinate (Tpgs) Reversing Multidrug Resistance. Colloids Surf. B Biointerfaces 2021, 205, 111914. [Google Scholar] [CrossRef]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Das, S.; Patra, S.K.; Efferth, T.; Jena, M.; Bhutia, S.K. Dietary Polyphenols in Chemoprevention and Synergistic Effect in Cancer: Clinical Evidences and Molecular Mechanisms of Action. Phytomedicine 2021, 90, 153554. [Google Scholar] [CrossRef]
- Vittorio, O.; Brandl, M.; Cirillo, G.; Kimpton, K.; Hinde, E.; Gaus, K.; Yee, E.; Kumar, N.; Duong, H.; Fleming, C.; et al. Dextran-Catechin: An Anticancer Chemically-Modified Natural Compound Targeting Copper That Attenuates Neuroblastoma Growth. Oncotarget 2016, 7, 47479–47493. [Google Scholar] [CrossRef]
- Tatullo, M.; Simone, G.M.; Tarullo, F.; Irlandese, G.; de Vito, D.; Marrelli, M.; Santacroce, L.; Cocco, T.; Ballini, A.; Scacco, S. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Dai, Q.; Geng, H.M.; Yu, Q.; Hao, J.C.; Cui, J.W. Polyphenol-Based Particles for Theranostics. Theranostics 2019, 9, 3170–3190. [Google Scholar] [CrossRef] [PubMed]
- Vittorio, O.; Curcio, M.; Cojoc, M.; Goya, G.F.; Hampel, S.; Iemma, F.; Dubrovska, A.; Cirillo, G. Polyphenols Delivery by Polymeric Materials: Challenges in Cancer Treatment. Drug Deliv. 2017, 24, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.J.; Fu, J.J.; Zhang, Y.H. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects. J. Med. Chem. 2017, 60, 7617–7635. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The Regulation of Nanomaterials and Nanomedicines for Clinical Application: Current and Future Perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef] [PubMed]
- Gessner, I. Optimizing Nanoparticle Design and Surface Modification toward Clinical Translation. Mrs Bull. 2021, 46, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.W.; Chambers, E.; Mitragotri, S. Factors That Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Curr. Pharm. Des. 2010, 16, 2298–2307. [Google Scholar] [CrossRef]
- Srinivasan, M.; Rajabi, M.; Mousa, S.A. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2015, 5, 1690–1703. [Google Scholar] [CrossRef]
Composition (Preparation) | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA | CDDP | CDDP | Lung | LLC | --- | LLC Xm | Control Release (pH) Selective Biodistr | [45] |
(Water dispersion) | ||||||||
HA | CDDP/SRF | CDDP/SRF | Liver | HepG2 | --- | HepG2 Xm | Control Release (pH) Synergism Selective Biodistr | [46] |
(Water dispersion) | ||||||||
HA | CDDP/GFT CDDP/MTX | CDDP/GFT CDDP/MTX | Breast | MDA-MB-231 | MCF-7 | --- | Targeting Multidrug therapy Sustained Release | [47] |
(Water dispersion) | ||||||||
HA | FCP-Tph | FCP-Tph | Breast | MDA-MB-231 4T1 | NIH 3T3 | S-D Rats 4T1 Xm | PDT Synergism Selective Biodistr | [48] |
(Sonication) | ||||||||
HA | PRTS-miR-34a | miR-34a | Breast | MDA-MB-231 | MCF-7 | MDA-MB-231 Xm | Control Release (pH) Synergism Selective Biodistr | [49] |
(Water dispersion) | ||||||||
HA/TPP | CS | miR-34a DOX | Breast | MDA-MB-231 | --- | MDA-MB-231 Xm | Control Release (pH) Synergism | [50] |
(Ionic crosslinking) | ||||||||
HA | CS SBE-βCD | CUR | Colon | HT-29 | I407 | --- | Targeting Synergism | [51] |
(Ionic coordination) | ||||||||
HA-SH * | CS | DOX | Breast | SKBR3 | --- | --- | Control Release (pH/redox) | [52] |
(Water dispersion) | ||||||||
HA-SH | NOCC | DOX CaP-siRNA | Cervix | HeLa | --- | --- | Controlled Release (pH/redox) Synergism | [53] |
HS-HA-DA | --- | |||||||
(Ionic coordination) | Ovary | OVCAR-3/MDR | ||||||
HA-SH #-oDNA * | --- | --- | Cervix | HeLa | NIH-3T3 | --- | Cell Blebbing and Death | [54] |
(K+-dependent self-assembly) | ||||||||
HA | --- | DOX | Bone | K7 | --- | S-D Rats K7 Xm | Control Release (pH) Synergism Selective Biodistr | [55] |
(Ionic crosslinking) | ||||||||
HA-His * | --- | DOX/Ce6/Mn2+ | Skin | B16 | --- | B16 Xm | Control Release (pH/redox) MRI/PDT/Synergism | [56] |
(Ionic crosslinking) | ||||||||
HHA | BSA | CDDP/ICG | Liver | HepG2 | L929 | HepG2 Xm | Control Release (redox) PTT/Synergism Selective Biodistr | [57] |
(Desolvation + coordination crosslinking) | ||||||||
HA | MPL/QS21/ R837 | MPL/QS21/ R837/OVA | --- | BMDCs | RAW 264.7 | C57BL/6 BALB/c mice | Selective Biodistr Immunotherapy (OVA antigen) | [58] |
(Dialysis) | Lymphatic system | --- | --- | EG7-OVA Xm |
Composition (Preparation) | Bioactive Agent | Performance | Outcome | [Ref] | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA-CHL * | --- | 2b/SiRNA | Skin | B16-F10 | RAW264.7 | --- | Targeting Control Release (pH) | [59] |
(Sonication) | ||||||||
GE11-HA-cys-CHL * | --- | DOX | Breast | MCF-7 MDA-MB-231 | --- | MDA-MB-231 Xm | Dual Targeting Control Release (Redox) Synergism | [60] |
(Sonication) | ||||||||
HA-cys-CHL * | --- | IR780 | Breast | MDA-MB-231 | --- | MDA-MB-231 Xm | PTT/PDT Selective Biodistr Synergism | [61] |
(Dialysis) | ||||||||
HA-CHL * | HSCP | DOX/PTX | Breast | MCF-7 | L929 | --- | Control Release (pH) Synergism | [62] |
(Embedding) | Liver | --- | HepG2 | |||||
KLVFF-pA §- HA-CHL * | LipoidS100/ CHL/ DSPE-mPEG | KLVFF DOX | Breast | 4T1 | HUVEC | Balb/c mice 4T1 Xm | Synergism Metastasis Inhibition | [63] |
(Thin-film hydration) | ||||||||
HA-TST * | --- | CPT/DOX | Breast | MCF-7 | --- | --- | Control Release (pH) Synergism | [64] |
(Dialysis) | ||||||||
HA-5βCA-Cy7.5 * | --- | --- | Breast | MDA-MB 231 | --- | --- | Targeting Control Release (HAase) | [65] |
(Water dispersion) | Prostate | PC-3 | ||||||
HA-5βCA-Cy5.5 * | --- | --- | Squamous | SCC7 | CV-1 | SCC7 Xm | Selective Biodistr | [66] |
(Water dispersion) | ||||||||
HA-5βCA * | --- | PTX | Squamous | SCC7 | NIH-3T3 | SCC7 Xm | Targeting Synergism Selective Biodistr | [67] |
(Sonication) | ||||||||
HA-5βCA * | --- | PTX | Colon | HT29 | NIH-3T3 | --- | Targeting Control Release (HAase) Selective Biodistr | [68] |
Lung | A549 | --- | ||||||
(High-pressure homogenization) | Breast | MDA-MB 231 | --- | |||||
Liver | HepG2 | --- | ||||||
Skin | MDA-MB-435 | MDA-MB-435 Xm | ||||||
HA-5βCA * | --- | PFP | Blood | CL | --- | --- | Echogenic Diagnosis | [69] |
(O/W Emulsion) | Colon | --- | HT-29 Xm | |||||
PEG-NH2-HA-5-βCA-Cy5.5 * | --- | --- | Squamous | SSC7 | CV-1 | SSC7 Xm | Selective Biodistr | [70] |
Colon | HCT116 | --- | ||||||
(Water dispersion) | Breast | MDA-MB 231 | --- | |||||
PEG-NH2-HA-5-βCA * | --- | DOX CPT | Squamous | SSC7 | NIH-3T3 | SSC7 Xm | Control Release (HAase) Selective Biodistr | [71] |
Colon | HCT116 | --- | ||||||
(Sonication) | Breast | MDA-MB 231 | --- | |||||
PEG-NH2-HA-5-βCA-Cy5.5 * | --- | IRT | Colon | --- | --- | HT-29 Xm | Diagnosis Synergism Selective Biodistr | [72] |
CT-26 Xm | ||||||||
(O/W Emulsion) | ||||||||
HA-DOCA-His * | --- | PTX | Breast | MCF-7 | --- | MCF-7 Xm | Control Release (pH) Synergism | [73] |
(Sonication) | ||||||||
HA-cys-DOCA-His * | --- | PTX | Breast | MDA-MB-231 | --- | MDA-MB-231 Xm | Control Release (Redox) Synergism | [74] |
(Dialysis) | ||||||||
mPEG-HA(DOCA)-NAC * | --- | PTX | Breast | MCF-7 | --- | --- | Control Release (Redox) Synergism Selective Biodistr | [75] |
(Sonication) | Liver | --- | H22 Xm | |||||
HA-DOCA-His * | PF 127 | DOX | Breast | MCF-7 MCF-7/ADR | --- | MCF-7/ADR Xm | Control Release (pH) Resistance Reversal | [76] |
(Dialysis) |
Composition (Preparation) | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA-DSPE * HA-DMPE * | CHL | --- | Breast | MCF-7 | --- | --- | Biocompatibility | [77] |
(Sonication) | ||||||||
HA-DPPE $ | CHL/DPPC/PG | C12GEM | Pancreas | MiaPaCa2 | VIT1 | MiaPaCa2 Xm | Synergism Selective Biodistr | [78] |
(Thin-film hydration) | ||||||||
HA-PEG-DSPE * | Tf-PEG-DSPE * GM/DOTAP/PC | pDNA | Lung | A549 | --- | A549 Xm | Dual Targeting Sustained Release Enhanced Transfection | [79] |
(O/W emulsion) | ||||||||
HA-CE £ | --- | HB PTX | Lung | A549 | --- | A549 Xm | Sustained Release Synergism/PDT | [80] |
(Dialysis) | ||||||||
HA-CE £ | DOTAP/DOPE | pDNA | Breast | MDA-MB-231 | NIH-3T3 | --- | Synergism | [81] |
(Thin-film hydration) | ||||||||
HA-CE £ | PC/CHL | DOX/MGV | Breast | MDA-MB-231 | --- | S-D rats MDA-MB-231 Xm | Control Release (pH) Selective Biodistr Synergism/MR Imaging | [82] |
(Thin-film hydration) | ||||||||
HA-CE £ | P85 | DTX | Brain | U87-MG | --- | --- | Sustained Release Synergism Resistance Reversal | [83] |
(Thin-film hydration) | Breast | MCF-7 | MCF-7/ADR | |||||
MCF-7/ADR | ||||||||
His-HA-DDA * | --- | DOX | Breast | 4T1 | --- | 4T1 Xm | Control Release (pH) Selective Biodistr Synergism | [84] |
(Dialysis) | ||||||||
HA-DDA * | Miglyol812 Tween80 SolutolHS15 CTAB | DTX | Lung | A549 | --- | --- | Targeting Enhanced Uptake | [85] |
(Self-emulsification) | ||||||||
HA-HDA * | DPPC | IONPs/DTX | Breast | MCF-7 | NIH-3T3 | --- | Synergism PTT Magnetic Targeting | [86] |
(Thin lipid film hydration) | ||||||||
HA-HDA * | PLGA | ZnPHC | Colon | HT-29 | --- | HT-29 Xm | PTT Selective Biodistribution | [87] |
(O/W emulsion) | Lung | A549 | --- | --- | ||||
Liver | --- | LO2 | --- | |||||
HA-DO * | CaP | ICG | Lung | A549 | --- | A549 Xm | Control Release (pH) PTT/PDT | [88] |
(Thin lipid film hydration) | ||||||||
HA-cys-STA * | --- | DOX | Colon | HCT116 | HEK293 CT-26 | HCT116 Xm CT-26 Xm | Control Release (Redox) Synergism | [89] |
(Dialysis) | ||||||||
HA-AUT * | --- | FITC-DEX NR | Breast | MDA-MB-468 | SK-BR-3 | --- | Control Release (Redox) Targeting | [90] |
(Water dispersion) | ||||||||
MPEG-ss-HA-HDO * | --- | PTX | Breast | MCF-7 | --- | --- | Control Release (Redox) Synergism Selective Biodistr | [91] |
(Sonication) | Liver | --- | H22 Xm | |||||
HA-His-MGK * | --- | CUR | Squamous | --- | --- | SCC7 Xm | Control Release (pH) Selective Biodistr | [92] |
(Thin-film hydration) | ||||||||
HA-His-MGK * | PEG-NH2-CS-K * | CUR | Mesothelioma | HMM-239 | HMM-239 Xm | Control Release (pH) Synergism In Vivo | [93] | |
(Thin-film hydration) | ||||||||
FA-HA-MGK * | --- | CUR | Lung | A549 | --- | --- | Double Targeting Controlled Release (pH) | [94] |
(Dialysis) | Breast | MCF-7 |
Composition (Preparation) | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA-PBA * | --- | ICG | Breast | MDA-MB-231 | 2000 MS1 | MDA-MB-231 Xm | Selective Biodistr | [98] |
(Dialysis) | ||||||||
HA-PBA * | ORL | ORL | Pancreas | PC-3 LNCaP | --- | --- | Synergism | [99] |
(Dialysis) | Breast | MDA-MB-231 | ||||||
HA-TIBA * | --- | DOX | Squamous | SCC7 | NIH-3T3 | SCC7 Xm | Control Release (pH) Selective Biodistr Synergism/CT Imaging | [100] |
(Thin-film hydration) | ||||||||
HA-DA *-IONPs | --- | HCPT | Squamous | SCC7 | --- | SCC7 Xm | Controlled Release (HAase) Synergism Magnetic Targeting MR Imaging | [101] |
(Water dispersion) | ||||||||
HA-cys-TPE * | --- | DOX | Ovary | ES2 | L929 | ES2 Xm | Control Release (pH/Redox) Synergism Selective Biodistr | [102] |
(Dialysis) | Cervix | HeLa | ||||||
HA-ss-MP * | --- | DOX | Colon | HCT-116 | --- | BALB/C mice HCT116 Xm | Control Release (pH, redox) Synergism Selective Biodistr | [103] |
(Dialysis) |
Composition (Preparation) | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA-BSA °° | --- | PTX IA C-1375 | Ovary | SKOV-3 | A2780 | --- | Targeting Synergism | [104] |
(Water Dispersion) | ||||||||
HA-ss-HSA * | --- | DOX | Breast | MDA-MB-231 | NIH-3T3 | --- | Control Release (redox) Synergism | [105] |
(Water Dispersion) | ||||||||
HA-PBLG ££ | --- | --- | Breast | MCF-7 | --- | S-D rats | Control Release (pH) Synergism | [106] |
(Nanoprecipitation) | Brain | --- | U87 | |||||
HA-PBLG ££ | --- | Dy-700 | Lung | A549 | H322 H358 | A549 Xm | Selective Biodistr | [107] |
(Nanoprecipitation) | H358 Xm | |||||||
HA-PBLG ££ | --- | GFT VN | Lung | A549 | H322 H358 | BALB/C mice H358 Xm H322 Xm A549 Xm | Selective Biodistr | [108] |
(Nanoprecipitation) | ||||||||
HA-ss-PZLL * | --- | DOX IONPs | Liver | HepG2 | --- | BALB/C mice | Control Release (redox) MR Imaging | [109] |
(Dialysis) | ||||||||
HA-PIPASP-Ce6 * | --- | DOX Ce6 | Colon | HCT-116 CT-26 | CV-1 | CT-26 Xm | Control Release (photochemical, pH) | [110] |
(Dialysis) | ||||||||
AcHA-PLA | --- | DOX | Colon | HCT-116 | --- | S-D rats | Selective Biodistr | [111] |
(Dialysis) | ||||||||
HA-PLGA * | --- | DOX | Colon | HCT-116 | --- | --- | Synergism | [112] |
(Dialysis) | ||||||||
HA-PLGA * | --- | DTX | Breast | MDA-MB-231 | MCF-7 | S-D rats MDA-MB-231 Xm | Targeting Selective Biodistr | [113] |
(Dialysis) | ||||||||
HA-PLGA * | --- | PpIX | Lung | A549 | --- | --- | Sustained release PDT Synergism | [114] |
(Dialysis) | ||||||||
HA-prop-PLA | sPLGA-LA | DTX | Lung | A549 | --- | A549 Xm | Control Release (redox) Synergism Selective Biodistr | [115] |
(Nanoprecipitation) | ||||||||
HA-cys-PLGA | TPGS | PTX RTV | Breast | MCF-7 MDA-MB-231 | MCF-12A | --- | Control Release (pH, redox) Synergism/Targeting Resistance Reversal | [116] |
(Sonication) | ||||||||
FA-HA-cys-PLGA * | --- | DOX | Breast | MCF-7 | --- | MCF-7 Xm | Control Release (pH, redox) Synergism | [117] |
(Dialysis) | ||||||||
Tf- HA-cys-PLGA * | PVA | HSP90 AUY922 | Brain | U87 P5 P5/TMZ-R | --- | U87 Xm | Control Release (redox) Selective Biodistr Synergism Resistance Reversal | [118] |
(Emulsion solvent evaporation) | ||||||||
HA-PLGA * | MSC | PTX | Brain | C6 | --- | C6 Xm | Sustained Release Synergism Selective Biodistr | [119] |
(Endocytosis) | ||||||||
HA-cys-PCL § | --- | DOX IONPs | Liver | HepG2 | --- | --- | Control Release (redox) MR Imaging | [120] |
(Dialysis) | ||||||||
HA-PCL | --- | I-LIP | Liver | HepG2 | CCL-13 | --- | Targeting Radiotherapy | [121] |
(Dialysis) | ||||||||
PCL-PEG-NH2-HA * | --- | DTX | Breast | MDA-MB-231 | NIH-3T3 | --- | Targeting Synergism | [122] |
(O/W emulsion solvent diffusion) | ||||||||
PDA-HA-prop-PCL § | --- | DOX | Squamous | SCC7 | --- | SCC7 Xm | Control Release (redox) Selective Biodistr | [123] |
(O/W emulsion) | ||||||||
HA-PPDSMA § | --- | DOX | Squamous | SCC7 | --- | SCC7 Xm | Control Release (redox) Selective Biodistr | [124] |
(Dialysis) | ||||||||
HA-P(TMC-DTC) § | --- | DTX | Breast | MDA-MB-231 | L929 | MDA-MB-231 Xm | Control Release (redox) Selective Biodistr | [125] |
(Dialysis) | ||||||||
HA-cys-MA * | HA-tet-GALA * | Sap | Breast | 4T1 | --- | MDA-MB-231 Xm | Control Release (redox) Synergism Selective Biodistr | [126] |
MDA-MB-231 | ||||||||
(Microfluidics click chemistry) | Lung | A549 | --- | |||||
Liver | SMMC-7721 | --- | ||||||
HA–ss–PNIPAAm * | --- | DOX | Lung | A549 | LO2 | --- | Control Release (redox) Targeting Selective Biodistr | [127] |
(T-triggered self-assembly) | Breast | --- | 4T1 Xm | |||||
HA-poly(DEGMA-co-OEGMA) & | --- | PTX | Ovary | SKOV-3 | HCT-8/E11 | --- | Targeting Synergism | [128] |
(T-triggered self-assembly) | ||||||||
HA-m-poly(DEGM-co-CMA) & | --- | PTX | Cervix | HeLa | Vero | HeLa Xm | Control Release (light) Selective Biodistr | [129] |
(T-triggered self-assembly) | ||||||||
HA-PEI * | HA-Cys * PEG-NH2-HA * | siRNA | Breast | MDA-MB-468 | --- | MDA-MB-468 Xm | Selective Biodistr Synergism | [130] |
Lung | A549/A549DDP | H69/H69AR | A549/A549DDP Xm H69/H69AR Xm | |||||
(Water Dispersion) | Skin | B16F10 | --- | B16F10 Xm | ||||
Liver | --- | Hep3B | --- | |||||
HA-PEI * | PEG-NH2-HA * | siRNA | Lung | A549/A549DDP | H69/H69AR | A549/A549DDP Xm H69/H69AR Xm | Selective Biodistr Synergism | [131] |
HA-ODA * | PEG-NH2-HA * | CDDP | ||||||
(Water Dispersion) | ||||||||
HA-BPEI * | --- | siRNA | Skin | B16F10 | HEK-293 | --- | Targeting | [132] |
(Coordination) | ||||||||
HA-βCD-OEI $ | pDNA | pDNA | Breast | MDA-MB-231 | MCF-7 | --- | Synergism targeting | [133] |
(Coordination) |
Composition | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA-βCD * | CUR-OXPt * | CUR-OXPt | Pancreas | PC-3 | LO2 | --- | Control Release (pH, Ease) Synergism | [140] |
Lung | A549 | |||||||
HA-PMCD * | Ps-PTX | Ps-PTX | Ovary | SKOV-3 | NIH-3T3 | --- | Control Release (HAase) Targeting/Synergism Imaging | [141] |
HA-βCD * | Fc-CA | Fc-CA | Breast | MCF-7 4T1 | NIH-3T3 | 4T1 Xm | Control Release (pH) CDT Selective Biodistr | [142] |
HA-αCD * | G-CB[8] | G-CB[8] | Lung | A549 | 293T | --- | PDT Targeting | [143] |
HA-αCD * | Trans-G | siRNA | Lung | A549 | 293T | --- | Control Release (UV) Synergism | [144] |
HA-βCD * | Ad-Pt | Pt | Breast | MCF-7 | NIH-3T3 | --- | Control Release (HAase) Synergism | [145] |
Ovary | SKOV-3 | SKOV-3 Xm | ||||||
AHA-βCD ° | Ad-ss-CPT | CPT | Liver | HepG2 | --- | --- | Control Release (pH/redox) Synergism | [146] |
Bone | --- | S180 | ||||||
HA-βCD * | Ad-DOTA-Gd Ad-Cy7 | Gd Cy7 | Breast | MCF-7 | --- | --- | Targeting MR Imaging NIR Imaging | [147] |
Brain | --- | U87-MG | ||||||
Ad-HA * | AM-βCD | CBL | Lung | A549 | --- | --- | Control Release (HAase) Synergism ATP Depletion | [148] |
Ad-HA * | βCD-TPE # | TPE DOX | Breast | MCF-7 | NIH-3T3 | --- | Control Release (pH) Targeting | [149] |
Ad-HA * | βCD-CPT * | CPT | Colon | HCT-116 | NIH-3T3 | --- | Targeting | [150] |
Ad-HA * | βCD-PEI * pDNA | pDNA | Cervix | HeLa | HeLa NIH-3T3 | --- | Targeting | [151] |
HA-βCD * | DAE-βCD § | adPy-Ru | Lung | A549 | 293T | --- | PDT Targeting | [152] |
TPhPh-HA-βCD * | PMCD-SS-CPT * adPs | CPT Ps | Lung | A549 | 293T | --- | Control Release (redox) PDT/Targeting | [153] |
HA-CE £-MβCD * | --- | --- | Breast | MDA-MB-231 | NIH-3T3 HUVEC | BALB/c mice MDA-MB-231 Xm | CHL Depletion Enhanced Apoptosis Targeting | [154] |
Ad-HA * | MβCD | --- | Colon | HCT-116 | NIH-3T3 | --- | CHL Depletion Enhanced Apoptosis Targeting | [155] |
Ad-HA * | FA-MβCD * | --- | Colon | HCT-116 | --- | --- | CHL Depletion Enhanced Apoptosis Targeting | [156] |
Composition | Bioactive Agent | Performance | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HA-Derivative | Other Components | Cancer Type | In Vitro | In Vivo | ||||
CD44+ | CD44− | |||||||
HA–PTX * | --- | PTX | Liver | H22 | --- | H22 Xm | Targeting Selective Biodistr | [166] |
(Water dispersion) | ||||||||
HA-aa-PTX * | --- | PTX | Breast | MCF-7 | --- | --- | Control Release (pH, HAase) Synergism | [167] |
(Water dispersion) | ||||||||
HA-prop-dOG-PTX § | --- | PTX | Breast | MCF-7 | --- | MCF-7 Xm | Control Release (pH) Targeting Selective Biodistr | [168] |
(Solvent exchange) | ||||||||
DTX-GFLG-HA-ss-DD * | --- | DTX | Breast | MDA-MB-231 | MCF-7 | MDA-MB-231 Xm | Control Release (pH, redox, protease) | [169] |
(Dialysis) | ||||||||
HA-d-DOX * | --- | DOX | Breast | MDA-MB-231 MDA-MB-468LN | --- | S–D rats MDA-MB-468LN Xm | Control Release (pH) Selective Biodistr | [170] |
(Water dispersion) | ||||||||
HA-cys-DOX * | --- | DOX | Lung | A549 | --- | A549 Xm | Control Release (pH, redox) Selective Biodistr | [171] |
(Water dispersion) | ||||||||
Gal-PEG-ss-HA-ss-DOX * | --- | DOX | Liver | HepG2 | --- | --- | Control Release (pH, redox) Dual Targeting | [172] |
(Water dispersion) | ||||||||
HA-cys *-PMAA-PDMAEMA-P[VHim]NTf2-DOX * | DOX | Breast | 4T1 | L929 | 4T1 Xm | Control Release (pH, redox) Synergism | [173] | |
(Dialysis) | Colon | CT-26 | --- | |||||
MTX-HA-ODA * | --- | MTX/CUR | Cervix | HeLa | --- | HeLa Xm | Dual targeting Control Release (pH) Synergism | [174] |
(Ultrasonication) | Breast | MCF-7 | --- | |||||
HA-cys-MTX * | --- | MTX | Cervix | HeLa | NIH-3T3 | HeLa Xm | Control Release (redox) Dual Targeting/Synergism Selective Biodistr | [175] |
(Water dispersion) | Lung | A549 | --- | |||||
HA-DTPA-CPT * | --- | CPT | Breast | 4T1 | MCF-7 | 4T1 Xm | Control Release (redox) Synergism Selective Biodistr | [176] |
(Ultrasonication) | ||||||||
PLA-CDM-HA- DTPA-CPT * | --- | CPT | Liver | HepG2 | --- | H22 Xm | Control Release (pH, redox) Synergism Selective Biodistribution | [177] |
(Electrospun) | ||||||||
HA-DAS * | TPGS | DAS/VES | Nasopharynge | HNE1 HNE1/DDP | --- | HNE1 Xm | Control Release (pH) Resistance Reversal Synergism Selective Biodistr | [178] |
(Thin-film hydration) | ||||||||
HA-VES * | tLyP-1-TPGS* | VES/DTX | Pancreas | PC-3 | --- | PC-3 Xm | Sustained Release Synergism Selective Biodistr | [179] |
(Emulsion solvent evaporation) | Breast | MDA-MB-231 | --- | |||||
HA-VES * | TPGS | VES DOX/CUR | Breast | MCF-7 MCF-7/ADR | --- | S-D rats 4T1 Xm | Control Release (pH) Resistance Reversal Synergism Selective Biodistr | [180] |
(Sonication) | ||||||||
HA-DAS * | TPGS | DAS/ROZ | Breast | MCF-7 MDA-MB-231 | --- | MDA-MB-231 Xm | Control Release (pH) Synergism Selective Biodistr | [181] |
(Thin-film hydration) | ||||||||
HA-VES * | --- | VES/DOX | Breast | MCF-7 MCF-7/ADR | --- | 4T1 Xm | Control Release (pH) Resistance Reversal Synergism Selective Biodistr | [182] |
(Sonication) | Liver | HepG2 | --- | |||||
HA-VES * | --- | VES DOX/CUR | Breast | MCF-7 MCF-7/ADR | --- | 4T1 Xm | Control Release (pH) MDR Reversal/Synergism Selective Biodistr | [183] |
(Sonication) | Liver | HepG2 | --- | |||||
HA-VES * | --- | VES/DTX Anti-PD-L1 | Skin | B16 | --- | B16 Xm | Synergism Immune-chemotherapy | [184] |
(Dialysis) | ||||||||
HA-CUR °° | --- | CUR/DOX | Cervix | HeLa | --- | --- | Control Release (pH) Synergism | [185] |
(Water dispersion) | Kidney | 786-O | 293A | |||||
Liver | --- | HepG2 | ||||||
HA-QC * | --- | QC/DTX | Liver | HepG2 | --- | HepG2 Xm | Control Release (pH) Synergism Resistance Reversal Selective Biodistribution | [186] |
(Dialysis) | ||||||||
HA-ss-EGCG ££ | --- | EGCG CDDP | Ovary | SKOV-3 | HEK293T | SKOV-3 Xm | Control Release (HAase) Synergism Selective Biodistr | [187] |
(Dialysis) | Colon | HCT-116 | ||||||
HA-Ala-EGCG * | PEI | EGCG GzmB | Colon | HCT-116 | --- | --- | Synergism | [188] |
(Water dispersion) | Liver | --- | HepG2 | |||||
HA-GCA * | --- | GCA PTX | Liver | HepG2 | HELF | --- | Synergism Selective Biodistr | [189] |
(Dialysis) | Skin | B16-F10 | --- | |||||
Breast | --- | MDA-MB-231 Xm | ||||||
HA-GCA * | --- | GCA PTX | Liver | HepG2 | --- | --- | Synergism Selective Biodistr | [190] |
(Dialysis) | Skin | B16-F10 | --- | |||||
Breast | --- | MDA-MB-231 Xm | ||||||
HA-ATPh-IR780 * | --- | IR780 | Bladder | MB-49 | --- | MB-49 Xm | Control Release (HAase) PTT/Selective Biodistr | [191] |
(Water dispersion) | ||||||||
HA-DB * | --- | DB | Colon | HCT-116 | A2780 | HCT-116 Xm | Targeting PDT | [192] |
(Sonication) | ||||||||
HA-Se-Se-Ce6 | BSA | Ce6/CYC | Breast | 4T1 | --- | 4T1 Xm | Control Release (redox, 1O2) PDT/Synergism Selective Biodistr | [193] |
(Desolvation) | ||||||||
HA-DNB-DEA/NO ** | --- | DEA/NO DOX | Liver | SMMC-7721 | HL-7702 | SMMC-7721 Xm | ROS Generation Control Release (HAase, redox) Synergism | [194] |
(Sonication) | ||||||||
HA-CHL £- BSAO * | --- | BSAO | Skin | M14 M14/MDR | --- | --- | Resistance Reversal Synergism | [195] |
(Sonication) | ||||||||
HA-PDI ξ | --- | PDI | --- | --- | --- | --- | Control Release (HAase) Early Diagnosis | [196] |
(Coordination) | ||||||||
HA-OPV * | PAA/HEP/CHS | OPV | --- | --- | --- | --- | Control Release (HAase) Fluorescence Imaging | [197] |
(Coordination) | ||||||||
HA-OVA $ | --- | OVA | Cervix | TC-1 | --- | TC-1 Xm | Immunotherapy | [198] |
(Water dispersion) | ||||||||
PEG-pep-HA-OVA * | --- | OVA | Cervix | TC-1 | --- | TC-1 Xm | Control Release (MMP9) Immunotherapy | [199] |
(Dialysis) |
HA-Derivative | Other Components | Preparation | Cancer Type | Bioactive Agent | Stimuli | In Vitro/In Vivo Success |
---|---|---|---|---|---|---|
HA (11) * | Bioactive (53) ** Polymer (27) ** Other (7) ** | Water Disp (47) ** Coordination (47) ** Dialysis (6) ** | Breast (38) **/Cervix (13) ** Liver (13) **/Bone (6) ** Colon (6) **/Lung (6) ** Lymphatic (6) ** Ovary (6) **/Skin (6) ** | Drug (67) ** Gene (27) ** PTT/PDT (20) ** Imaging (7) ** Immuno (7) ** | pH (53) ** Redox (27) ** | (100) **/(60) ** |
HA-LIPOID (30) * βCA (19) ** FAD (19) ** CE (10) ** CHL (11) ** DOCA (10) ** PPL (7) ** Other (24) ** | PPL (17) ** Polymer (10) ** Bioactive (2) ** Other (7) ** | Thin Film (40) ** Dialysis (29) ** Water Disp (17) ** Emulsion (14) ** | Breast (40) **/Colon (13) ** Lung (12) **/Squamous (12) ** Liver (5) **/Pancreas (3) ** Skin (3) **/Blood (2) ** Brain (2) **/Cervix (2) ** Mesothelioma (2) ** Ovary (2) **/Prostate (2) ** | Drug (62) ** PTT/PDT (12) ** Imaging (10) ** Gene (7) ** | pH (33) ** Redox (19) ** HAase (10) ** | (92) **/(53) ** |
HA-POLYMER (22) * PLA/PLGA (30) ** PPEP (24) ** PACRY (20) ** PCL (13) ** PEI (13) ** | Polymer (10) ** Bioactive (3) ** Other (3) ** | Dialysis (37) ** Emulsion (10) ** Water Disp (17) ** Coordination (7) ** Temperature (10) ** Precipitation (13) ** Other (6) ** | Breast (31) **/Lung (22) ** Liver (11) **/Brain (8) ** Colon (8) **/Ovary (6) ** Skin (6) **/Squamous (6) ** Cervix (2) ** | Drug (77) ** Gene (13) ** Imaging (7) ** PTT/PDT (7) ** Radio (3) ** | pH (13) ** Redox (40) ** Light (3) ** | (94) **/(50) ** |
HA-CD (12) * HA-Ad (35) ** | Bioactive (47) ** CD (41) ** Other (12) ** | Host–Guest (100) ** | Lung (30) **/Breast (25) ** Colon (15) **/Ovary (10) ** Bone (5) **/Cervix (5) ** Liver (5) **/Pancreas (5) ** | Drug (47) ** PTT/PDT (24) ** Gene (6) ** Imaging (12) ** | pH (24) ** Redox (12) ** HAase (18) ** Enzyme (6) ** Light (6) ** | (95) **/(20)** |
HA-Prodrug (25) * | Polymer (21) ** | Water Disp (53) ** Dialysis (23) ** Coordination (6) ** Thin Film (6) ** Other (12) ** | Breast (35) **/Liver (21) ** Cervix (11) **/Colon (9) ** Skin (9) **/Lung (5) ** Bladder (2) **/Kidney (2) ** Nasopharynge (2) ** Ovary (2) **/Pancreas (2) ** | Drug (79) ** PTT/PDT (9) ** Immuno (9) ** Imaging (6) ** | pH (47) ** Redox (26) ** HAase (15) ** Enzyme (3) ** | (95) **/(62) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curcio, M.; Vittorio, O.; Bell, J.L.; Iemma, F.; Nicoletta, F.P.; Cirillo, G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials 2022, 12, 2851. https://doi.org/10.3390/nano12162851
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials. 2022; 12(16):2851. https://doi.org/10.3390/nano12162851
Chicago/Turabian StyleCurcio, Manuela, Orazio Vittorio, Jessica Lilian Bell, Francesca Iemma, Fiore Pasquale Nicoletta, and Giuseppe Cirillo. 2022. "Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy" Nanomaterials 12, no. 16: 2851. https://doi.org/10.3390/nano12162851
APA StyleCurcio, M., Vittorio, O., Bell, J. L., Iemma, F., Nicoletta, F. P., & Cirillo, G. (2022). Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials, 12(16), 2851. https://doi.org/10.3390/nano12162851