Aloe Vera Functionalized Magnetic Nanoparticles Entrapped Ca Alginate Beads as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment
2.3. Preparation of Beads
2.3.1. Synthesis of Ca Alginate Beads (CABs)
2.3.2. Synthesis of Aloe-Vera Calcium Alginate Beads (AVCABs)
2.3.3. Synthesis of Aloe-Vera Functionalized Magnetic Nanoparticles on Ca Alginate Beads (AVMNCABs)
2.4. Spectrophotometric Determination of Cu (II)
2.5. Batch Adsorption Experiments
2.6. Desorption
3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. X-ray Diffraction (XRD)
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. Vibrating Sample Magnetometer (VSM)
3.1.4. Scanning Electron Microscopy (SEM)
3.1.5. Energy Dispersive X-ray (EDX) Spectroscopy
3.2. Effect of pH
3.3. Effect of Adsorbent Amount
3.4. Effect of Time
3.5. Effect of Copper Ion Concentration
3.6. Adsorption Isotherms
3.7. Adsorption Kinetics
3.8. Thermodynamic Parameters
3.9. Adsorption Mechanism
3.10. Comparison with Other Adsorption Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volesky, B. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 2001, 59, 203–216. [Google Scholar] [CrossRef]
- Vunain, E.; Mishra, A.K.; Mamba, B.B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016, 86, 570–586. [Google Scholar] [CrossRef] [PubMed]
- WHO. Copper in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Tong, K.S.; Kassim, M.J.; Azraa, A. Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: Equilibrium, kinetics, and thermodynamic studies. Chem. Eng. J. 2011, 170, 145–153. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.Y.; Liang, S. Adsorption study of copper (II) by chemically modified orange peel. J. Hazard. Mater. 2009, 164, 1286–1292. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010, 262, 94–98. [Google Scholar] [CrossRef]
- He, J.; Li, Y.; Wang, C.; Zhang, K.; Lin, D.; Kong, L.; Liu, J. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci. 2017, 426, 29–39. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Hebeish, A.; Ramadan, M.; Abdel-Halim, E.; Abo-Okeil, A. An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions. Clean Technol. Environ. Policy 2011, 13, 713–718. [Google Scholar] [CrossRef]
- Chouchene, A.; Jeguirim, M.; Trouve, G. Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol. Environ. Policy 2014, 16, 979–986. [Google Scholar] [CrossRef]
- Wang, F.; Pan, Y.; Cai, P.; Guo, T.; Xiao, H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 2017, 241, 482–490. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, H.; Pan, Y.; Wang, L. Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustain. Chem. Eng. 2018, 6, 6994–7002. [Google Scholar] [CrossRef]
- Wang, X.; Yu, S.; Chen, Z.; Zhao, Y.; Jin, J.; Wang, X. Complexation of radionuclide 152+154Eu(III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy. Sci. China Chem. 2017, 60, 107–114. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.; Ren, X.; Wang, X.; Wang, H.; Wang, X. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Mater. Sci. 2019, 103, 180–234. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Gupta, V.K.; Imran, A. Removal of lead and chromium from wastewater using bagasse fly ash—A sugar industry waste. J. Colloid Interface Sci. 2004, 27, 21–28. [Google Scholar] [CrossRef]
- Monser, L.; Adhoum, N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 2002, 26, 137–146. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, S.N.; Chong, K.H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 2003, 41, 1979–1986. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca algae based chitosan Bio-composites for bioremediation of Cd(II) ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Haroun, A.; El-Halawany, N. Preparation and evaluation of novel interpenetrating polymer network-based on newspaper pulp for removal of copper ions. Polym. Plast. Technol. 2011, 50, 232–238. [Google Scholar] [CrossRef]
- Haroun, A.; Mashaly, H.; El-Sayed, N. Novel nanocomposites based on gelatin/HPET/chitosan with high performance acid red 150 dye adsorption. Clean Technol. Environ. Policy 2013, 15, 367–374. [Google Scholar] [CrossRef]
- Kardam, A.; Raj, K.; Srivastava, S.; Srivastava, M. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Policy Clean Technol. Environ. 2014, 16, 385–393. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, M.; Mao, L.; Xu, D.; Zeng, G.; Huang, H. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. J. Colloid Interface Sci. 2017, 499, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, M.; Chen, J.; Wan, Q.; Tian, J.; Huang, L. Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl. Surf. Sci. 2017, 419, 35–44. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl. Surf. Sci. 2015, 343, 19–27. [Google Scholar] [CrossRef]
- Kahraman, S.; Dogan, N.; Erdemoglu, S. Use of various agricultural wastes for the removal of heavy metal ions. Int. J. Environ. Pollut. 2008, 34, 275–284. [Google Scholar] [CrossRef]
- Malkhede, S.S.; Rao, Y.R.M. Sorption of Cu (II) Ions by Adsorption using Orange Peel. Int. Conf. Res. Front. Sci. 2021, 1913, 012090. [Google Scholar]
- Onundi, Y.B.; Mamun, A.A.; Al Khatib, M.F.; Ahmed, Y.M. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Technol. 2010, 7, 751. [Google Scholar] [CrossRef]
- Acar, F.N.; Eren, Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions. J. Hazard. Mater. 2006, 137, 909–914. [Google Scholar] [CrossRef]
- Demirbas, E.; Dizge, N.; Sulak, M.T.; Kobya, M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 2009, 148, 480–487. [Google Scholar] [CrossRef]
- Zhang, J.H.; Fu, H.; Lv, X.S.; Tang, J.; Xu, X.H. Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass Bioenergy 2011, 35, 464–472. [Google Scholar] [CrossRef]
- Kim, J.W.; Sohn, M.H.; Kim, D.S.; Sohn, S.M.; Kwon, Y.S. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion. J. Hazard. Mater. 2001, 85, 301–315. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Liu, Z.; Huang, Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater. 2009, 161, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C 2010, 30, 304–310. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Z.; Liu, J.; Huang, Q. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination 2010, 258, 41–47. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Hasanzadeh, F.; Zare, E.N. Nanogel and super-paramagnetic nanocomposite of thiacalix[4]arene functionalized chitosan: Synthesis, characterization and heavy metal sorption. Iran. Polym. J. 2014, 23, 933–945. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Krajangpan, S.; Chisholm, B.J.; Khan, E.; Bermudez, J.J.E. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 2009, 166, 1339–1343. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Mojerlou, F.; Zare, E.N. Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydr. Polym. 2014, 106, 34–41. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.; Rahman, M.T.; Ghosh, S.; Hossain, M.Z.; Shi, J.Z.; Hidajat, K.; Uddin, M.S. β-Cyclodextrin conjugated magnetic, fluorescent silica core–shell nanoparticles for biomedical applications. Carbohydr. Polym. 2013, 95, 449–457. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wang, Y.; Yang, S.T. Simultaneous removal of Co(II) and 1-Naphthol by core-shell styructured Fe3O4@cyclodextrin magnetic nanoparticles. Carbohydr. Polym. 2014, 114, 521–529. [Google Scholar] [CrossRef]
- Shi, T.; Xie, Z.; Mo, X.; Feng, Y.; Peng, T.; Song, D. Highly efficient adsorption of heavy metals and cationic dyes by smart functionalized sodium alginate hydrogels. Gels 2022, 8, 343. [Google Scholar] [CrossRef] [PubMed]
- Veglio, F.; Esposito, A.; Reverberi, A.P. Copper adsorption on calcium alginate beads: Equilibrium pH-related models. Hydrometallurgy 2002, 65, 43–57. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, S.K.; Jain, A.K.; Mandal, M.M.; Pandey, P.K. Removal of copper ion from synthetic wastewater using Aloe vera as an adsorbent. Eur. J. Adv. Eng. Technol. 2017, 4, 249–254. [Google Scholar]
- Kapashi, E.; Kapnisti, M.; Dafnomili, A.; Noli, F. Aloe Vera as an effective biosorbent for the removal of thorium and barium from aqueous solutions. J. Radioanal. Nucl. Chem. 2019, 321, 217–226. [Google Scholar] [CrossRef]
- Lilhare, S.; Mathew, S.B.; Singh, A.K. A novel chromogenic scheme for the determination of Cu(II) in water samples. Anal. Chem. Lett. 2021, 11, 872–885. [Google Scholar] [CrossRef]
- JCPDS Data Card. International Center of Diffraction Data; National Bureau of Standards: Washington, DC, USA, 1988. [Google Scholar]
- Verma, R.; Asthana, A.; Singh, A.K.; Susan, M.A.B.H. Glycine functionalized magnetic nanoparticle entrapped calcium alginate beads: A promising adsorbent for removal of Cu(II) ions. J. Environ. Chem. Eng. 2016, 4, 1985–1995. [Google Scholar]
- Singh, M.; Dosanjh, H.S.; Singh, H. Surface modified spinel cobalt ferrite nanoparticles for cationic dye removal: Kinetics and thermodynamics studies. J. Water Process Eng. 2016, 11, 152–161. [Google Scholar] [CrossRef]
- Nastaj, J.; Przewłocka, A.; Rajkowska-Myśliwiec, M. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: Equilibrium, kinetic and mechanism studies. Pol. J. Chem. Technol. 2016, 18, 81–87. [Google Scholar] [CrossRef]
- Reddy, D.H.; Lee, S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 2013, 201, 68–93. [Google Scholar] [CrossRef]
- Mirjavadi, E.S.; Tehrani, R.M.A.; Khadir, A. Effective adsorption of zinc on magnetic nanocomposite of Fe3O4/zeolite/cellulose nanofibers: Kinetic, equilibrium, and thermodynamic study. Environ. Sci. Pollut. Res. Int. 2019, 26, 33478–33493. [Google Scholar] [CrossRef]
- Verma, R.; Asthana, A.; Singh, A.K.; Prasad, S.; Susan, M.A.B.H. Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem. J. 2017, 130, 168–178. [Google Scholar] [CrossRef]
- Ai, L.; Huang, H.Y.; Chen, Z.L.; Wei, X.; Jiang, J. Activated carbon/CoFe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J. 2010, 156, 243–249. [Google Scholar] [CrossRef]
- Fotsing, P.N.; Woumfo, E.D.; Măicăneanu, S.A.; Vieillard, J.; Tcheka, C.; Ngueagni, P.T.; Siéwé, J.M. Removal of Cu(II) from aqueous solution using a composite made from cocoa cortex and sodium alginate. Environ. Sci. Pollut. Res. 2020, 27, 8451–8466. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Langmuir, I. The constitution and fundamental properties of Solid and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physiochim 1940, 12, 327–356. [Google Scholar]
- Naghizadeh, A.; Ghasemi, F.; Derakhshani, E.; Shahabi, H. Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles. Desalin. Water Treat. 2017, 80, 247–254. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Gholami, K. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions. J. Water Health 2017, 15, 555–565. [Google Scholar] [CrossRef]
- Kamranifar, M.; Naghizadeh, A. Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics. Iran. J. Chem. Chem. Eng. 2017, 36, 127–137. [Google Scholar]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Kungl. Sven. Vetensk. Handlingar. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. The Sorption of Lead(II) Ions on Peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Chien, S.H.; Layton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P. Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36, 2304–2315. [Google Scholar] [CrossRef]
- Jiang, N.N.; Xu, Y.T.; Dai, Y.Q.; Luo, W.A.; Dai, L.Z. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. J. Hazard. Mater. 2012, 215, 17–24. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, W.; Zhou, W.; Luo, J. Novel magnetic polysaccharide/graphene oxide @FeO gel beads for adsorbing heavy metal ions. Carbohydr. Polym. 2019, 216, 119–128. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Gomathi, T.; Latha, S.; Hajeeth, T.; Sudha, P.N. Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int. J. Biol. Macromol. 2016, 82, 440–452. [Google Scholar] [CrossRef]
- Jovanovic, M.; Grbavcic, Z.; Rajic, N.; Obradovic, B. Removal of Cu(II) from aqueous solutions by using fluidized zeolite A beads: Hydrodynamic and sorption studies. Chem. Eng. Sci. 2014, 117, 85–92. [Google Scholar] [CrossRef]
- Rahmani, O.; Bouzid, B.; Guibadj, A. Extraction and characterization of chitin and chitosan: Applications of chitosan nanoparticles in the adsorption of copper in an aqueous environment. e-Polymers 2017, 17, 383–397. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, L.P.; Pittman, C.U.; Mohan, D. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J. Colloid Interface Sci. 2017, 492, 176–190. [Google Scholar] [CrossRef]
- Liu, Q.; Han, R.; Qu, L.; Ren, B. Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats. Environ. Sci. Pollut. Res. 2019, 41, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wan, W.; Shang, Z.; Gao, X.; Kobayashi, N.; Luo, G.; Li, Z. Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Sep. Purif. Technol. 2018, 197, 156–169. [Google Scholar] [CrossRef]
- Šolić, M.; Maletić, S.; Isakovski, M.K.; Nikić, J.; Watson, M.; Kónya, Z.; Tričković, J. Comparing the Adsorption Performance of Multiwalled Carbon Nanotubes Oxidized by Varying Degrees for Removal of Low Levels of Copper, Nickel and Chromium(VI) from Aqueous Solutions. Water 2020, 12, 723. [Google Scholar] [CrossRef]
- Saleem, A.; Hong, W.J.; Sun, T.; Sharaf, F.; Haris, M.; Lei, S. Enhanced and selective adsorption of Copper ions from acidic conditions by diethylenetriaminepentaacetic acid-chitosan sewage sludge composite. J. Environ. Chem. Eng. 2020, 8, 104430. [Google Scholar] [CrossRef]
Samples | Most Intense Peak (2θ, Degrees) | Most Intense Peak (θ, Degrees) | FWHM of the Most Intense Peak (β, Radians) | Particle Size (D, nm) |
---|---|---|---|---|
CABs | 36.61 | 18.30 | 2.00 | 0.072 |
AVCABs | 36.25 | 18.12 | 1.11 | 0.131 |
AVMNCABs | 33.11 | 16.55 | 6.57 | 0.022 |
Isotherm | Value of Parameters | |||
---|---|---|---|---|
Langmuir | qmax (mg g−1) | KL | R2 | RL |
CABs | 15.38 | 0.193 | 0.982 | 0.518 |
AVCABs | 41.66 | 0.049 | 0.991 | 0.671 |
AVMNCABs | 111.11 | 0.014 | 0.997 | 0.877 |
Freundlich | KF (mg g−1) (mg L−1)n | n | R2 | |
CABs | 3.296 | 1.182 | 0.959 | |
AVCABs | 2.137 | 1.05 | 0.986 | |
AVMNCABs | 1.62 | 1.026 | 0.994 | |
Temkin | B1 | KT (L mg−1) | R2 | |
CABs | 28.19 | 0.058 | 0.779 | |
AVCABs | 30.99 | 0.03 | 0.837 | |
AVMNCABs | 17.26 | 0.091 | 0.919 |
Models | Kinetics Parameters | ||
---|---|---|---|
Pseudo-First-Order | k1 (min−1) | qe (mg g−1) | R2 |
CABs | 0.027 | 426.578 | 426.578 |
AVCABs | 0.041 | 426.578 | 426.578 |
AVMNCABs | 0.043 | 426.578 | 426.578 |
Pseudo-Second-Order | k2 (g mg−1 min−1) | qe (mg g−1) | R2 |
CABs | 0.092 | 0.471 | 0.931 |
AVCABs | 0.129 | 0.512 | 0.973 |
AVMNCABs | 0.312 | 0.510 | 0.997 |
Intra-particle Diffusion | kd (mg g−1 min−1) | C (mg g−1) | R2 |
CABs | 0.035 | 0.040 | 0.980 |
AVCABs | 0.036 | 0.097 | 0.991 |
AVMNCABs | 0.027 | 0.226 | 0.949 |
Elovich model | α (mg g−1 min−2) | β (g mg−1 min−1) | R2 |
CABs | −0.042 | 0.090 | 0.900 |
AVCABs | 0.005 | 0.095 | 0.962 |
AVMNCABs | 0.160 | 0.069 | 0.991 |
Adsorbents | ΔH (kJ/mol) | ΔS (J/mol/K) | ΔG (kJ/mol) | ||
---|---|---|---|---|---|
303 K | 313 K | 323 K | |||
CABs | 0.82 | 215.7 | −8.6 | −12.7 | −14.6 |
AVCABs | 0.8 | 210.2 | −8.21 | −12.17 | −14.07 |
AVMNCABs | 0.57 | 153.2 | −6.6 | −9.4 | −10.9 |
S.No. | Adsorbents | Adsorption Capacity (mg g−1) | pH | Ref. |
---|---|---|---|---|
1. | Polyaniline/calcium alginate composite | 79.0 | 3.0 | [67] |
2. | Magnetic composite gel beads (CMC/SA/graphene oxide@Fe3O4) | 55.96 | 5.0 | [68] |
3. | Nanochitosan/sodium alginate/microcrystalline cellulose beads | 43.3 | 5.0 | [69] |
4. | Fluidized zeolite beads | 23.3 | [70] | |
5. | Chitosan nanoparticles-bentonite-alginate | 12.21 | 7.0 | [71] |
6. | γ-Fe2O3 nanoparticles | 34.0 | [72] | |
7. | Iminodiacetic acid-functionalized Paeonia ostii seed coats | 36.6 | 5.0 | [73] |
8. | Plasma-modified activated carbon | 21.4 | 5.0 | [74] |
9. | Oxidized Functionalized multiwalled carbon nanotubes | 14.086 | [75] | |
10. | Sewage sludge-based composite adsorbent diethylenetriaminepentaacetic acid | 31.42 | 3.0 | [76] |
11. | (a) Calcium alginate beads (CABs) | 15.38 | 4.0 | Present study |
(b) Aloe-vera calcium alginate beads (AVCABs) | 41.66 | 4.0 | Present study | |
(c) Aloe-vera functionalized magnetic nanoparticles entrapped calcium alginate beads (AVMNCABs) | 111.11 | 4.0 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lilhare, S.; Mathew, S.B.; Singh, A.K.; Carabineiro, S.A.C. Aloe Vera Functionalized Magnetic Nanoparticles Entrapped Ca Alginate Beads as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions. Nanomaterials 2022, 12, 2947. https://doi.org/10.3390/nano12172947
Lilhare S, Mathew SB, Singh AK, Carabineiro SAC. Aloe Vera Functionalized Magnetic Nanoparticles Entrapped Ca Alginate Beads as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions. Nanomaterials. 2022; 12(17):2947. https://doi.org/10.3390/nano12172947
Chicago/Turabian StyleLilhare, Surbhi, Sunitha B. Mathew, Ajaya Kumar Singh, and Sónia A. C. Carabineiro. 2022. "Aloe Vera Functionalized Magnetic Nanoparticles Entrapped Ca Alginate Beads as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions" Nanomaterials 12, no. 17: 2947. https://doi.org/10.3390/nano12172947
APA StyleLilhare, S., Mathew, S. B., Singh, A. K., & Carabineiro, S. A. C. (2022). Aloe Vera Functionalized Magnetic Nanoparticles Entrapped Ca Alginate Beads as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions. Nanomaterials, 12(17), 2947. https://doi.org/10.3390/nano12172947