Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of the Chitin Supported Nano-Metal Catalysts
2.2.1. Synthesis of the Chitin Microspheres
2.2.2. Synthesis of the Chitin Supported Monometallic Catalysts
2.2.3. Synthesis of the Chitin Supported Bimetallic Catalysts
2.2.4. Selective Hydrogenation for 4-Nitrostyrene
2.3. Characterization
3. Results and Discussion
3.1. Formation of the Chitin-Supported Metal Catalysts and Its Selective Hydrogenation of C=C to C-C
3.2. Structure of the Pt-Ni catalyst
3.3. Selective Hydrogenation of NO2 to NH2 for the Pt-Ni/Chitin Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pei, Y.; Moghadam, B.R.; Zhang, X.; Li, Z.; Wang, J. Interface catalysis by Pt nanocluster@Ni3N for bifunctional hydrogen evolution and oxygen evolution. Mater. Chem. Front. 2020, 4, 2665–2672. [Google Scholar] [CrossRef]
- Arenas, L.F.; Hadjigeorgiou, G.; Jones, S.; Van, D.N.; Hodgson, D.; Cruden, A.; de León, C.P. Effect of airbrush type on sprayed platinum and platinum-cobalt catalyst inks: Benchmarking as PEMFC and performance in an electrochemical hydrogen pump. Int. J. Hydrogen Energy 2020, 45, 27392–27403. [Google Scholar] [CrossRef]
- Ding, K.; Hu, Z.; Zhang, W.H.; Liang, J.X.; Wang, Y.M.; Li, H.; Sun, Z.J.; Liang, Q.L.; Sun, H.B. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity. Micropor. Mesopor. Mat. 2022, 332, 111693. [Google Scholar] [CrossRef]
- Bai, S.X.; Bu, L.Z.; Shao, Q.; Zhu, X.; Huang, X.Q. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. J. Am. Chem. Soc. 2018, 140, 8384–8387. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, C.; Liang, C. Highly selective catalysts for the hydrogenation of alkynols: A review. Chin. J. Catal. 2021, 42, 2105–2121. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Liu, C.; Wu, T.K.; Liu, R.; Wu, L. Surface synergetic effects of Pt clusters/monolayer Bi2MoO6 nanosheet for promoting the photocatalytic selective reduction of 4-nitrostyrene to 4-vinylaniline. Appl. Catal. B-Environ. 2022, 304, 121010. [Google Scholar] [CrossRef]
- Trandafir, M.M.; Pop, L.; Hădade, N.D.; Florea, M.; Garcia, H. An adamantane-based COF: Stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene. Catal. Sci. Technol. 2016, 6, 8344–8354. [Google Scholar] [CrossRef]
- Zhou, P.; Li, D.Z.; Jin, S.W.; Chen, S.H.; Zhang, Z.H. Catalytic transfer hydrogenation of nitro compounds into amines over magnetic graphene oxide supported Pd nanoparticles. Int. J. Hydrogen Energy 2016, 4, 15218–15224. [Google Scholar] [CrossRef]
- Martyna, B.; Krzysztof, C.; Wojciech, K.; Grzegorz, B.; Dariusz, M.; Beara, M.; Ryszard, K.; Beata, Z. A comparison of hydrogen storage in Pt, Pd and Pt/Pd alloys loaded disordered mesoporous hollow carbon spheres. Nanomaterials 2018, 8, 639–652. [Google Scholar]
- Sohn, H.; Xiao, Q.; Seubsai, A.; Ye, Y.; Lee, J.; Han, H.; Park, S.; Chen, G.; Lu, Y. Thermally robust porous bimetallic (NixPt1–x) alloy microcrystals within carbon framework: High-performance catalysts for oxygen reduction and hydrogenation reactions. ACS Appl. Mater. Interfaces 2019, 11, 21435–21444. [Google Scholar] [CrossRef]
- Gao, H.G.; Shi, R.; Shao, Y.T.; Liu, Y.; Zhu, Y.F.; Zhang, J.G.; Li, L.Q. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride-science direct. Int. J. Hydrogen Energy 2022, 47, 9346–9356. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Lee, S.J.; Shwetharani, R.; Kim, H.S.; Pasha, S.K.K.; Ashokkumar, M.; Choi, M.Y. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light-Sci. Appl. 2022, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.L.; Deng, Y.; Li, Y.; Huang, Y.G.; Yuan, K.; Lee, J.F.; Chan, T.S.; Zhou, J.P.; Lei, A.W.; Zhang, L.N. Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale 2018, 10, 14719–14725. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Castro, F.D.J.; Beltrán-Gastélum, M.; Soto, O.M.; Pérez-Sicairos, S.; Lin, S.W.; Trujillo-Navarrete, B.; Paraguay-Delgado, F.; Salazar-Gastélum, L.J.; Romero-Castañón, T.; Reynoso-Soto, E.; et al. Ultra-Low Pt loading in PtCo catalysts for the hydrogen oxidation reaction: What role do Co nanoparticles play? Nanomaterials 2021, 11, 3156. [Google Scholar] [CrossRef]
- Li, W.; Chu, X.S.; Wang, F.; Dang, Y.Y.; Liu, X.Y.; Wang, X.C.; Wang, C.Y. Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Appl. Catal. B-Environ. 2021, 288, 120034. [Google Scholar] [CrossRef]
- Jin, T.; Liu, T.; Lam, E.; Moores, A. Chitin and chitosan on the nanoscale. Nanoscale Horizons 2021, 6, 505–542. [Google Scholar] [CrossRef]
- Pei, X.L.; Deng, Y.; Duan, B.; Chan, T.S.; Lee, F.J.; Lei, A.W.; Zhang, L.N. Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts. Nano Res. 2018, 11, 3145–3153. [Google Scholar] [CrossRef]
- Zhang, J.P.; Lin, F.Z.; Yang, L.J.; He, Z.Y.; Huang, X.S.; Zhang, D.W.; Dong, H. Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chin. Chem. Lett. 2020, 31, 2019–2022. [Google Scholar] [CrossRef]
- Pei, X.L.; Jiao, H.B.; Fu, H.; Yin, X.G.; Luo, D.; Long, S.Y.; Gong, W.; Zhang, L.N. Facile construction of a highly dispersed Pt nanocatalyst anchored on biomass-derived N/O-doped carbon nanofibrous microspheres and its catalytic hydrogenation. ACS Appl. Mater. Inter. 2020, 12, 51459–51467. [Google Scholar] [CrossRef]
- Hou, W.X.; Zhao, Q.Z.; Liu, L. Selective conversion of chitin to levulinic acid catalyzed by ionic liquids: Distinctive effect of N-acetyl groups. Green Chem. 2020, 22, 62–70. [Google Scholar] [CrossRef]
- Duan, B.; Zheng, X.; Xia, Z.; Fan, X.; Guo, L.; Liu, J.; Wang, Y.; Ye, Q.; Zhang, L.N. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem. Int. Ed. 2015, 54, 5152–5156. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Sato, K.; Chaudhari, C.; Yamada, H.; Toriyama, T.; Yamamoto, T.; Matsumura, S.; Aspera, S.M.; Nakanishi, H.; Haneda, M.; et al. Nitrile hydrogenation to secondary amines under ambient conditions over palladium–platinum random alloy nanoparticles. Catal. Sci. Technol. 2022, 12, 4128–4137. [Google Scholar] [CrossRef]
- Duan, Y.; Yu, Z.Y.; Yang, L.; Zheng, L.R.; Zhang, C.T.; Yang, X.T.; Gao, F.Y.; Zhang, X.L.; Yu, X.; Liu, R. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lee, S.J.; Theerthagiri, J.; Fonseca, S.; Pinto, L.M.C.; Maia, G.; Choi, M.Y. Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and non-enzymatic sensor. Chem. Eng. J. 2022, 435, 134790. [Google Scholar] [CrossRef]
- Mcbride, F.; Hodgson, A. The reactivity of water and OH on Pt-Ni(111) films. Phys. Chem. Chem. Phys. 2018, 20, 16743–16748. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lee, S.J.; Theerthagiri, J.; Lee, Y.; Choi, M.Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal. B-Environ. 2022, 316, 121603. [Google Scholar] [CrossRef]
- Guo, L.H.; Tian, Y.J.; He, X.Y.; Qiao, C.Z.; Liu, G.Z. Hydrodeoxygenation of phenolics over uniformly dispersed Pt-Ni alloys supported by self-pillared ZSM-5 nanosheets. Fuel 2022, 322, 124082. [Google Scholar] [CrossRef]
- Bahrami, A.; Kazeminezhad, I.; Abdi, Y. Pt-Ni/rGO counter electrode: Electrocatalytic activity for dye-sensitized solar cell. Superlattices Microst. 2019, 125, 125–137. [Google Scholar] [CrossRef]
- Zhang, J.K.; Zheng, X.H.; Yu, W.; Feng, X.; Qin, Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B-Environ. 2022, 306, 121116. [Google Scholar] [CrossRef]
- Pires, M.D.S.; Haye, E.; Zubiaur, A.; Job, N.; Pireaux, J.J.; Houssiau, L.; Busby, Y. Defective Pt-Ni/graphene nanomaterials by simultaneous or sequential treatments of organometallic precursors by low-pressure oxygen plasma. Plasma Processes Polym. 2019, 16, 1800203. [Google Scholar] [CrossRef]
- Zhou, J.; An, W.; Wang, Z. Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: Mechanism, kinetics and descriptor. Catal. Sci. Technol. 2019, 9, 4314–4326. [Google Scholar] [CrossRef]
- Xie, Y.F.; Cai, J.Y.; Wu, Y.R.; Hao, X.B.; Niu, S.W.; Yin, X.; Pei, Z.B.; Wang, G.M. Atomic disorder enables superior catalytic surface of Pt-based catalysts for alkaline hydrogen evolution. ACS Mater. Lett. 2021, 3, 1738–1745. [Google Scholar] [CrossRef]
- Duan, B.; Liu, F.; He, M.; Zhang, L.N. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835–2845. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, L.; Lei, H.; Wen, H.G.; Pei, K.S. A facile method to synthesize Pt-Ni octahedral nanoparticles with porous and open-structure features for enhanced oxygen reduction catalysis. ACS Sustain. Chem. Eng. 2019, 7, 8109–8116. [Google Scholar]
Entry | Catalyst | Time (h) | Yield b (%) | Yield c (%) |
---|---|---|---|---|
1 | Pt/Chitin | 24 | 87 | Trace |
2 | Pd/Chitin | 1 | 92 | 3 |
3 | Pd/Chitin | 4 | 46 | 53 |
4 | Chitin | 36 | - | - |
5 | Pt-Pd/Chitin | 2 | 99 | - |
6 | Pt-Pd/Chitin | 10 | 46 | 22 |
7 | Pt-Fe/Chitin | 3 | 87 | - |
8 | Pt-Co/Chitin | 10 | 82 | - |
9 | Pt-Cu/Chitin | 10 | 72 | - |
10 | Pt-Ni/Chitin (3:1) | 3 | 99 | - |
11 | Pt-Ni/Chitin (1:1) | 3 | 39 | - |
12 | Pt-Ni/Chitin (1:3) | 3 | 59 | - |
13 | Pt-Ni/Chitin (3:1) | 48 | 99 | - |
14 | Commercial Pt/C d | 24 | 42 | Trace |
15 | Commercial nano-Pt e | 24 | 5 | - |
Entry | Solvent | Temperature (°C) | Time (h) | Yield b (%) |
---|---|---|---|---|
1 | Toluene | 60 | 3 | Trace |
2 | H2O | 60 | 3 | 43 |
3 | MeOH | 60 | 3 | 24 |
4 | THF | 60 | 3 | Trace |
5 | DCM | 60 | 3 | 13 |
6 | DMF | 60 | 3 | 16 |
7 | IPA | 60 | 3 | 34 |
8 | MeOH: H2O = 1:1 | 60 | 3 | 37 |
9 | Toluene: H2O = 1:1 | 60 | 3 | 99 |
10 | Toluene: H2O = 1:1 | 30 | 3 | 28 |
11 | Toluene: H2O = 1:1 | 75 | 3 | 89 |
12 | Toluene: H2O = 1:1 | 90 | 3 | 82 |
13 | Toluene: H2O = 1:1 | 120 | 3 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, S.; Zhang, L.; Liu, Z.; Jiao, H.; Lei, A.; Gong, W.; Pei, X. Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene. Nanomaterials 2022, 12, 2968. https://doi.org/10.3390/nano12172968
Long S, Zhang L, Liu Z, Jiao H, Lei A, Gong W, Pei X. Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene. Nanomaterials. 2022; 12(17):2968. https://doi.org/10.3390/nano12172968
Chicago/Turabian StyleLong, Siyu, Lingyu Zhang, Zhuoyue Liu, Huibin Jiao, Aiwen Lei, Wei Gong, and Xianglin Pei. 2022. "Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene" Nanomaterials 12, no. 17: 2968. https://doi.org/10.3390/nano12172968
APA StyleLong, S., Zhang, L., Liu, Z., Jiao, H., Lei, A., Gong, W., & Pei, X. (2022). Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene. Nanomaterials, 12(17), 2968. https://doi.org/10.3390/nano12172968