Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties
Abstract
:1. Introduction
2. Experiments
2.1. Preparation of Cadmium Stearate
2.2. Preparation of Zinc Diethyldithiocarbamate
2.3. Synthesis of CdSe QDs
2.4. Synthesis of CdSe/ZnS Core/Shell Nanocrystals
2.5. Characterizations
3. Results and Discussion
3.1. Effect of Precursor Concentration
3.2. Influence of TBP
3.3. CdSe/ZnS Core–Shell Nanocrystal
3.4. CdSe/CdS Core–Shell Nanocrystal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, Z.G.; Patil, P.O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. 2020, 157, 105011. [Google Scholar] [CrossRef]
- Iso, Y.; Isobe, T. Review-photostable fluorescent Cd-free quantum dots transparently embedded in monolithic silica. ECS J. Solid State Sci. Technol. 2019, 9, 016005. [Google Scholar] [CrossRef]
- Kamat, P.V.; Kuno, M. Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 2021, 54, 520–531. [Google Scholar] [CrossRef]
- Li, J.L.; Liang, Z.; Su, Q.C.; Jin, H.; Wang, K.L.; Xu, G.; Xu, X.Q. Small molecule-modified hole transport Layer targeting low turn-on-voltage, bright, and efficient full-color quantum dot light emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3865–3873. [Google Scholar] [CrossRef]
- Li, J.; Guo, Q.; Jin, H.; Wang, K.; Xu, D.; Xu, Y.; Xu, G.; Xu, X. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles. J. Appl. Phys. 2017, 122, 135501. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, D.S.; Jin, S.W.; Lee, H.; Jeong, Y.R.; You, I.; Zi, G.; Ha, J.S. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 2022, 427, 130858. [Google Scholar] [CrossRef]
- Lv, Y.B.; Yuan, Y.C.; Hu, N.; Jin, N.; Xu, D.D.; Wu, R.L.; Shen, H.B.; Chen, O.; Li, L.S. Thick-shell CdSe/ZnS/CdZnS/ZnS core/shell quantum dots for quantitative immunoassays. ACS Appl. Nano. Mater. 2021, 4, 2855–2865. [Google Scholar] [CrossRef]
- Li, J.L.; Jin, H.; Wang, K.L.; Xie, D.H.; Xu, D.H.; Xu, X.Q.; Xu, G. High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC. Adv. 2016, 6, 72462–72470. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Pal, S.; Ghosh, M. Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise. Opt. Quantum Electron. 2016, 48, 372. [Google Scholar] [CrossRef]
- Das, T.K.; Ilaiyaraja, P.; Sudakar, C. Coexistence of strongly and weakly confined energy levels in (Cd,Zn)Se quantum dots: Tailoring the near-band-edge and defect-levels for white light emission. J. Appl. Phys. 2017, 121, 183102. [Google Scholar] [CrossRef]
- Peng, Z.A.; Peng, X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Liu, Y.X.; Xu, S.; Geng, C.; Xie, Y.Y.; Zhang, Z.H.; Zhang, Y.H.; Bi, W.G. Formation of “steady size” state for accurate size control of CdSe and CdS quantum dots. J. Phys. Chem. Lett. 2017, 8, 3576–3580. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.P.; Zhuang, Z.B.; Xie, T.; Wang, Y.G.; Li, J.; Peng, Q.; Li, Y.D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423–16429. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Dutt, V.G.V.; Arciniegas, M.P. Recent progress on metal chalcogenide semiconductor tetrapod-shaped colloidal nanocrystals and their applications in optoelectronics. Chem. Mater. 2019, 31, 9216–9242. [Google Scholar]
- Geiregat, P.; Van Thourhout, D.; Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 2019, 11, 41. [Google Scholar] [CrossRef]
- Gavrishchuk, E.M.; Rodin, S.A.; Kurashkin, S.V.; Firsov, K.N.; Martynova, O.V.; Zhavoronkov, N.V.; Kapkin, D.V.; Chegnov, V.P.; Zakharov, N.G.; Kononov, I.G.; et al. Diffusion-doped Cr:CdSe single crystals for mid-IR lasers. Opt. Mater. 2022, 128, 112372. [Google Scholar] [CrossRef]
- Vyshnava, S.S.; Kanderi, D.K.; Dowlathabad, M.R. Confocal laser scanning microscopy study of intercellular events in filopodia using 3-mercaptopropoinc acid capped CdSe/ZnS quantum dots. Micron 2022, 153, 103200. [Google Scholar] [CrossRef]
- Jung, H.; Ahn, N.; Klimov, V.I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655. [Google Scholar] [CrossRef]
- Yeh, C.-Y.; Lu, Z.W.; Froyen, S.; Zunger, A. Zinc-blende--wurtzite polytypism in semiconductors. Phys. Rev. B 1992, 46, 10086–10097. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, X.G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732. [Google Scholar] [CrossRef] [PubMed]
- Katari, J.E.B.; Colvin, V.L.; Alivisatos, A.P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109–4117. [Google Scholar] [CrossRef]
- Williams, E.S.; Major, K.J.; Tobias, A.; Woodall, D.; Morales, V.; Lippincott, C.; Moyer, P.J.; Jones, M. Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots. J. Phys. Chem. C 2013, 117, 4227–4237. [Google Scholar] [CrossRef]
- Yu, W.W.; Peng, X.G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Edit. 2002, 41, 2368–2371. [Google Scholar] [CrossRef]
- Mahler, B.; Lequeux, N.; Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 2010, 132, 953–959. [Google Scholar] [CrossRef]
- Ben Amara, I.; Boustanji, H.; Jaziri, S. Tuning optoelectronic response of lateral core-alloyed crown nanoplatelets: Type-II CdSe-CdSe1-xTex. J. Phys.-Condens. Mat. 2021, 33, 465301. [Google Scholar] [CrossRef]
- Boonsin, R.; Barros, A.; Donat, F.; Boyer, D.; Chadeyron, G.; Schneider, R.; Boutinaud, P.; Mahiou, R. Optical properties and reliability studies of gradient alloyed green emitting (CdSe)(x)(ZnS)(1-x) and red emitting (CuInS2)(x)(ZnS)(1-x) quantum dots for white light-emitting diodes. ACS Photonics 2018, 5, 462–470. [Google Scholar] [CrossRef]
- Nan, W.N.; Niu, Y.A.; Qin, H.Y.; Cui, F.; Yang, Y.; Lai, R.C.; Lin, W.Z.; Peng, X.G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693. [Google Scholar] [CrossRef]
- LaMer, V.K.; Dinegar, R.H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Zhao, P.N.; Li, J.; Han, S. Preparation and mechanism investigation of CdS quantum dots applied for copper ion rapid detection. J. Alloys Compd. 2021, 854, 157195. [Google Scholar] [CrossRef]
- Fedorov, V.; Ganshin, V.; Korkishko, Y. Determination of the point of the zincblende-to-wurtzite structural phase transition in cadmium selenide crystals. Phy. Status Solidi (A) 1991, 126, K5–K7. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, L.X.; Liu, W.Y.; Wu, L.J.; Lu, Z.Z.; Cao, W.R. High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification. RSC. Adv. 2021, 11, 14047–14052. [Google Scholar] [CrossRef]
- Morgan, D.P.; Kelley, D.F. Mechanism of hole trap passivation in CdSe quantum dots by alkylamines. J. Phys. Chem. C 2018, 122, 25661–25667. [Google Scholar] [CrossRef]
- Yordanov, G.G.; Yoshimura, H.; Dushkin, C.D. Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloid. Surf. A 2008, 322, 177–182. [Google Scholar] [CrossRef]
- Talapin, D.V.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; RodriguezViejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, X.G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235. [Google Scholar] [CrossRef]
Structure | Shell Thickness (ML) | τ1 (ns) | B1 | τ2 (ns) | B2 | τave (ns) | χ2 |
---|---|---|---|---|---|---|---|
CdSe | 0 | 9.7 | 49.9 | 49.2 | 50.1 | 42.7 | 1.04 |
CdSe/ZnS (Without TBP) | 0.5 | 22.9 | 68.3 | 84.7 | 31.7 | 62.0 | 1.10 |
1.2 | 16.3 | 64.8 | 32.8 | 35.2 | 24.9 | 1.05 | |
1.7 | 6.9 | 22.2 | 20.4 | 77.8 | 19.2 | 1.01 | |
2.1 | 3.2 | 39.1 | 13.5 | 60.9 | 12.1 | 1.08 | |
CdSe/ZnS (With TBP) | 0.6 | 24.8 | 69.2 | 94.3 | 30.8 | 68.5 | 1.16 |
1.5 | — | — | 22.7 | 100 | 22.7 | 1.21 | |
1.9 | — | — | 20.2 | 100 | 20.2 | 1.24 | |
2.3 | — | — | 19.9 | 100 | 19.9 | 1.05 | |
2.7 | — | — | 20.9 | 100 | 20.9 | 1.28 |
Structure | Shell Thickness (ML) | τ1 (ns) | B1 | τ2 (ns) | B2 | τave (ns) | χ2 |
---|---|---|---|---|---|---|---|
CdSe | 0 | 9.7 | 48.8 | 49.2 | 512 | 42.6 | 1.12 |
CdSe/CdS (Without TBP) | 0.8 | 22.9 | 65.0 | 96.8 | 35.0 | 74.2 | 1.27 |
2.6 | 12.3 | 34.7 | 23.5 | 65.3 | 21.1 | 1.01 | |
4.9 | — | — | 19.6 | 100.0 | 19.6 | 1.15 | |
6.7 | — | — | 20.2 | 100.0 | 20.2 | 1.25 | |
8 | 9.8 | 15.4 | 24.5 | 84.6 | 23.5 | 1.06 | |
CdSe/CdS (With TBP) | 0.8 | 23.5 | 68.9 | 86.6 | 31.1 | 68.8 | 1.07 |
2.8 | — | — | 19.6 | 100.0 | 21.0 | 1.10 | |
5.1 | — | — | 20.5 | 100.0 | 20.5 | 1.05 | |
6.8 | — | — | 21.4 | 100.0 | 21.37 | 1.07 | |
8.1 | — | — | 22.7 | 100.0 | 22.7 | 1.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, H.; Zheng, Z.; Rong, H.; Zeng, Z.; Zeng, H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. Nanomaterials 2022, 12, 2969. https://doi.org/10.3390/nano12172969
Li J, Zheng H, Zheng Z, Rong H, Zeng Z, Zeng H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. Nanomaterials. 2022; 12(17):2969. https://doi.org/10.3390/nano12172969
Chicago/Turabian StyleLi, Jingling, Haixin Zheng, Ziming Zheng, Haibo Rong, Zhidong Zeng, and Hui Zeng. 2022. "Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties" Nanomaterials 12, no. 17: 2969. https://doi.org/10.3390/nano12172969
APA StyleLi, J., Zheng, H., Zheng, Z., Rong, H., Zeng, Z., & Zeng, H. (2022). Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. Nanomaterials, 12(17), 2969. https://doi.org/10.3390/nano12172969